Dr. Baowei Fei received a five-year NIH R01 grant on molecular image-directed, 3D ultrasound image guided biopsy.

Prostate cancer affects 1 in 6 men in the USA. Every man over the age of 45 is at risk for prostate cancer. Systematic transrectal ultrasound (TRUS)-guided biopsy is the standard method for a definitive diagnosis of prostate cancer. More than 1.2 million prostate biopsies are performed annually and the medical cost is more than two billion dollars each year. However, this technique has a significant sampling error and is characterized by low sensitivity (39-52%). The current biopsy approach can miss up to 30% of prostate cancers. As a negative biopsy does not preclude the possibility of a missed cancer, both the physicians and patients face challenges in making treatment decisions. Due to the increasing number of younger men with potentially early and curable prostate cancer, this problem must be addressed in order to improve cancer detection rate. This project is to develop a molecular image-directed, 3D ultrasound-guided system for targeted biopsy of the prostate. If completely developed, the multimodality molecular image-guided system will be able to be used not only for biopsy but also for brachytherapy, radiofrequency thermal ablation, cryotherapy, and photodynamic therapy. The research could improve prostate cancer detection by using novel molecular imaging technology and by using a new three-dimensional image-guided biopsy device. The molecular image-guided system can be used not only for improved biopsy of diseases but also for minimally invasive therapy of cancers.