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Abstract
We developed a new minimal path segmentation method for mouse kidney MR images. We used
dynamic programming and a minimal path segmentation approach to detect the optimal path
within a weighted graph between two end points. The energy function combines distance and
gradient information to guide the marching curve and thus to evaluate the best path and to span a
broken edge. An algorithm was developed to automatically place initial end points. Dynamic
programming was used to automatically optimize and update end points during the searching
procedure. Principle component analysis (PCA) was used to generate a deformable model, which
serves as the prior knowledge for the selection of initial end points and for the evaluation of the
best path. The method has been tested for kidney MR images acquired from 44 mice. To
quantitatively assess the automatic segmentation method, we compared the results with manual
segmentation. The mean and standard deviation of the overlap ratios are 95.19%±0.03%. The
distance error between the automatic and manual segmentation is 0.82±0.41 pixel. The automatic
minimal path segmentation method is fast, accurate, and robust and it can be applied not only for
kidney images but also for other organs.
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1. INTRODUCTION
Autosomal-dominant polycystic kidney disease (ADPKD) is a common genetic disorder,
which lead to enlarged bilateral kidneys with multiple cysts. The severity of the renal
functional impairment is associated with the size of the kidneys, where larger kidneys are
found with poorer renal function [1]. Serial MRI studies can provide high-resolution
anatomic structure of the kidneys and thus could be a useful tool for the assessment of
various therapies [2]. We are investigating a transgenic mouse model for evaluating new
therapeutic drugs. We are utilizing MR imaging for noninvasive monitoring and assessment.
In this paper, we focus on automatic segmentation methods for mouse kidney MR images.

Automatic image segmentation methods use local image force at a specific point, but also on
the properties of a contour’s shape. Kass et al. proposed an active contour model [3], which
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is also termed as “snake” because of the feature of its evolution. The method provides an
interactive tool for image segmentation and it has been investigated extensively among the
model-based techniques. The minimization of the energy is controlled by two important
forces, i.e. the internal energy that controls the smoothness of the contour, and the potential
energy that attracts the contour toward the object boundary. However, this method has two
limitations. First, it is sensitive to its initial position, especially for noised images. The
second limitation is that it is not easy to deal with topological adaptation such as splitting or
merging model parts, because a new parameterization must be constructed whenever the
topology change occurs[17]. Geometric deformable models, proposed independently by
Caselles et al. [6] and Malladi et al. [7], provide a solution to overcome the primary
drawbacks of the active contour model. Geometric models are based on the curve evolution
theory [8–11] and the level set method developed by Osher and Sethian [12, 13]. Osher and
Sethian have also proven that a particular case of the classical energy snake model is
equivalent to finding a geodesic or minimal distance path in a Riemannian space with a
metric derived from the image content. This means that under a specific framework,
boundary detection can be considered equivalent to finding a path of minimal weighted
length via an active contour model based on geodesic or local minimal distance
computation. The graph search method [14] and the fast march method [15] all search for
the running cost in order to find the shortest path under this framework. The graph search
methods, such as Dijkstra’s graph search method [14, 16] and Dynamic programming
[19,20], use a grid with prescribed weights to find an optimal path. The fast march method is
a computational technique that approximates the solution to nonlinear equations. The graph
search methods solve minimal path problems much more directly than the fast marching
method. However, they suffer from “metrication errors”. In other words, a rectangular grid
with an equal unit weight will produce multiple paths between the two end points with the
same cost [15].

To overcome this shortcoming, Cohen et al. proposed a global minimal path approach [17].
Their method detects the global minimum energy path between two end points. This
approach does permit a better handling of the noise than the other active contour models, but
it requires user intervention to mark some initial end points on the true boundary. Gerger et
al. [14] and Yan et al. [18] took advantage of a priori knowledge as model to design a
potential window as the search constraints for their dynamic programming active contour
model. But two shortcomings of these methods also exist. It requires careful selection of
initial position and it is sensitive to noise and broken edges.

We are developing dynamic programming and minimal path segmentation approach to
detect the optimal path within a weighted graph between two end points. An energy function
will combine distance and gradient information to guide the marching curve and thus to
evaluate the best path and to span a broken edge. The segmentation algorithm could
automate the placement of initial end points. Dynamic programming was used to
automatically optimize and update end points during the searching procedure. Principle
component analysis (PCA) was used to generate the deformable model, which was used as
the prior knowledge for the selection of initial end points and for the evaluation of the best
path.

The organization of the paper is as follows. In Section 2, we discuss the details of proposed
method. In Section 3, the method is applied to segment kidney MR images from transgenic
mice. The summary and conclusion are presented in Section 4.

Li and Fei Page 2

Proc SPIE. Author manuscript; available in PMC 2013 December 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2. METHODS
2.1 Energy Function

The traditional energy function of a snake is proposed by Kass et al. [5], which includes two
important forces as follow:

(1)

Where α, β and λ denote real positive weighting constants; Ω ∈ [0,1] is the parameterization
interval for the contour; ∇I represents the gradient of the image. Given the set of constants
α, β and λ, the function can be solved to obtain the segmented contour C. Let β = 0 and ∇I
be replaced by g(|∇I|)2, the energy function becomes

(2)

Where g(|∇I|)2, is a potential function which is strictly decreasing, so that g(r) → 0 as r →
∞. A new function for minimizing (2) is equivalent to a problem of geodesic computation in
a Riemannian space, proposed by Caselles et al. [5], as follows:

(3)

where the Euclidean length of the contour C is given by L(C) = ∫Ω|C′(ν)|dν = ∫Ωds.
Therefore, the problem of image segmentation is transformed into a search for the global
minimal path. This method is called as minimal path, which has lower computational
complexity in high-order gradients and does not involve minimizing the corresponding
Euler–Lagrange equation.

In this paper, we modify this function to improve the robustness because we found the
distance map can lose important gradient information. We incorporated distance and
gradient information into an energy function to guide the marching curve toward the best
path and to span the broken edge. One term was added to the energy function, which
represents the gradient information from the original image. Therefore, the energy function
is

(4)

Where α, β and γ are real positive weighting constants which balance the forces, Ω denotes
the current curve body, Emod el can be calculated using Bayes’ Rule and the maximum
posteriori probability (MAP) function,

(5)

where Ψ denotes the weighted graph that contains the estimated curve of the object, G(x, y)
denotes the weighted graph of the image. The first term represents the degree of the current
curve matching the estimated distance map, the second term represents the degree of the
estimated distance map matching the former distance map, and the third term represents the
probability of the estimated shape which is described later.
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(6)

where the first term denotes the degree of the curve C in the distance map, which is the
Euclidean length of the curve C; the second item denotes the gradient of the original image,
which is used to regulate the searching when the distance map is not enough for guiding the
curve in case of noises and lack of a real edge. λ and (1-λ) denote the weights of the distance
and gradient information.

2.2 Kidney Model
The prior information is used to constrain the actual deformation of the contour or surface in
order to extract the shape that is consistent with the training data or the prior model.

Several methods of incorporating prior shape information into boundary determination have
been developed. Staib and Duncan [21] proposed a statistical deformable model using a
Fourier representation. It is a direct parameterization method for representing curves and
surfaces. Another approach was proposed by Pentland et.al and Nastar et.al. [22, 23], which
is similar to the deformable Fourier model except that both the basic functions and the
nominal values of their coefficients are derived from a template object shape. An extension
of deformable models that incorporate local and global shape features is the deformable
super quadric, proposed by Terzopoulos and Metaxas [24]. Active shape models (ASMs) are
proposed by Cootes et al., which define a set of points at various features in the image [25,
26]. Ip and Shen incorporated prior shape information by using an affine transformation to
align a shape template with the deformable model and to guide the model’s deformation to
produce a shape consistent with the template [27]. The deformable Fourier model, active
shape model, and other extensions are all parametric deformable models. Fritsch et al.
extracted the important shape features using information on the medial loci or cores of the
shapes, which provides greater robustness to image disturbances such as noise and blurring
than purely edge-based models. [28]

In this paper, the prior knowledge was incorporated into a deformable model for segmenting
or localizing the anatomical structure. The deformable model for selecting initial end points
and evaluating the best path is created in our algorithm. We computed and obtained a kidney
shape model using the principal component analysis (PCA).

For training images, we first registered them using a custom-made program and then
manually segmented the kidney on each image. We then performed distance transforming
under a fixed size window. After computing the mean of the 1 training distance maps, we

got a mean contour, .

Then, the variable μ is subtracted from each μi to create the mean-offset array μoffset, which
is placed as a column vector in an Nd ×n dimensional matrix M. We computed and obtained
a kidney shape model using the principal component analysis (PCA). After using singular
value decomposition (SVD), the matrix is decomposed as P =UΣVT. Matrix U is the model
with orthogonal column vectors that consist of the modes of shape variation and diagonal
matrix Σ is composed of corresponding singular values. Given coefficient α and shape
matrix Uk, we can estimate a new shape μ,
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(7)

Which is represented by k principal components in a k-dimensional vector of shape
parameters α (where k < n). We assumed the shape parameter α was satisfied a Gaussian
distribution as represented below:

(8)

2.3 Improved Dynamic Programming
In our method, the first step is transforming the image into a graph-based map. The graph-
based search methods consider an image as a graph with a rectangular grid in which each
pixel is a node. Boundary definition via dynamic programming can be formulated as a graph
searching problem where the goal is to find the optimal path between a set of start nodes and
a set of end nodes. The optimal path is defined as the minimum cumulative cost path, where
the cumulative cost of a path is the sum of the local costs of the pixels on the path.

To overcome the difficult of searching the initial direction in dynamic programming, we
define a universal direction window, any direction searching window map must be
transformed into this universal direction searching window. In the step of searching the
minimal path by dynamic programming, each point have three children points, and each
children point also has each three children points in the next step, so the universal searching
window looks like a triangle area. We defined the center point of the start line in this
window as the start stage of dynamic programming, and defined the each point of the end
line as the end stage. So, if there are n points in the end line, there are n optional paths
generated in our one path searching. We can obtain several optional results for evaluation.
The best path is then selected using former energy function.

3. EXPERIMENTS AND RESULTS
We acquired kidney MR images from 44 mice using a Siemens Sonata 1.5 T scanner. A
three-dimensional (3D) True FISP pulse sequence (TR/TE= 10.4/5.2ms) with a slice
thickness of 500 μm was used to generate high-resolution coronal images (matrix: 256 ×
192, FOV: 67 × 50-mm).

Incorporation of prior knowledge requires a training step that involves manual interaction to
accumulate information on the variability of the object shape being delineated. This
information is then used to constrain the actual deformation of the contour or surface to
extract shapes consistent with the training data. We randomly selected 20 dataset for model
training, and used the other 24 datasets to test the segmentation method.

For the training images, we first registered and manually segmented the 20 kidney dataset on
each image. We then performed distance transformation under a defined window size. After
computing the mean of the training distance maps, we got a mean contour. Then, the
variable μ is subtracted from each to create the mean-offset array, which is placed as a
column vector in an N dimensional matrix M. After using the formulas (4) and (5), we
obtained the mean shape contour and singular value and orthogonal.

After the generation of our kidney model, we segmented the other 24 mice kidney dataset.
Before segmentation, the image was preprocessed by Canny edge detection [29] and
distance transform [30]. Figure 1 shows the procedure of creating and updating serial end
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points for minimal path searching. We set the goal object in the center of our rectangular
searching window. Then, we selected the window center as the central point to create radius
rays with an interval of a fixed angle (22.5 degrees in our case). If the weight value on the
rays is zero in the distance map, it is marked as an end point, no matter what it is on the fake
or real edge because of noise or edge discontinuity. If not, we selected the intersection point
between the rays and mean segmented contour of the model as the marked end point. Thus,
a sequence of marked end points was generated.

At the beginning of searching the minimal path using dynamic programming, we selected
every two interval adjacent-end points and several neighbor points of the subsequent end
points as the start and end stages for dynamic programming. After the procedure of dynamic
programming between start and end stages, we finished the path searching one time.
Because the start stage has one end point and the end stage has several end points, several
paths are generated and a best path with minimal energy will be selected. We used the
function (4) to evaluate and select the minimal energy path. We selected the middle point of
this minimal path as the next starting end point, rather than the next point of the original
alignment. From this new starting point to its interval point, a new searching procedure was
started again. Thus, the marked end points were continuously updated and optimized
towards the direction of the real edge. We can set the number of iterations or can control the
error rate between two iterations as the stopping condition. After several iterations, a
satisfied segmented contour could be obtained. The result contour is on or approaching the
real edge because of the influence of maximum probability of the model. We can get the
satisfied result, even if a part of real edge was lost on the image.

Figure 2 demonstrates the steps for the minimal path segmentation, which include Canny
edge detection, distance transform, gradient map, and the minimal path segmentation.

The segmentation was evaluated by the overlap ratio between automatic and manual
segmentation and by mean distance errors between the two segmentations. The overlap ratio
is calculated as the ratio of superposition between our automatic segmentation results and
the manual segmentation results. The distance error is the distance between a point on one
segmented contour and its closest point on the other segmented contour. The mean distance
error is the mean of all points on the contour. For MR images from 24 mice, the overlap
ratio is 0.93%±0.05% between automatic and manual segmentation and the distance error is
0.85±0.41 pixel. The method is accurate and robust for mouse kidney MR images. For “bad”
images with many noises and the broken edges, our method also achieved satisfied results.
Figure 3 shows four different images and the segmentation results. The method works well
for both “good” and “bad” images as well as for images with discontinuous edges.

4. DISCUSSIONS AND CONCLUSIONS
We developed a new, automatic, minimal path segmentation method for mouse kidney MR
images. To improve the robustness, we incorporated distance and gradient information into
the energy function in order to guide the marching curve toward the best path. We also
incorporated a prior knowledge model into the segmentation in order to span broken edges.
Dynamic programming was used to automatically update the end points. Preliminary results
from 44 mouse demonstrated that this method is fast, accurate, and robust for kidney MR
images. The method was implemented in two-dimensional images and we are extending it to
three-dimensional image volumes. We believe that this method can be applied not only for
kidney images but also for other organs.
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Fig. 1.
Procedure for selecting and updating end points. (a) Initial end points. Radial rays were
generated from the window center of the distance map. If the weighting value of a point
along the ray is zero, it is marked as an end point. If not, select the intersection point
between the ray and the mean contour of the model as the marked end point. (b) Update end
points. If there is a broken edge and the end point is far away from the real edge, the
algorithm will use the model. The end point will be corrected towards the real edge (Arrow)
after iterations. (c)–(d) End Points after one and two iterations, respectively.
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Fig. 2.
Steps for the minimal path segmentation. (a) Original image. (b) Edge map generated from
the original image using Canny edge detection. (c) Distance map generated from the edge
map using Euclidean distance transform. (d) Gradient map generated from the original
image. (e) and (f) Results from the minimal path segmentation without using the gradient
map (λ=1) and with the gradient and distance information (λ=0.8), respectively. (g) Manual
segmentation result.
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Fig. 3.
Automatic segmentation results for images with different quality. Image (a) is a typical
mouse kidney MR image. The boundaries of the kidney on the images (b), (c) and (d) are
not continuous. The automatic segmentation method works well for all the images.

Li and Fei Page 11

Proc SPIE. Author manuscript; available in PMC 2013 December 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


