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Abstract

Prostate cancer affects 1 in 6 men in the USA. Systematic transrectal ultrasound (TRUS)-guided 

biopsy is the standard method for a definitive diagnosis of prostate cancer. However, this “blind” 

biopsy approach can miss at least 20% of prostate cancers. In this study, we are developing a 

PET/CT directed, 3D ultrasound image-guided biopsy system for improved detection of prostate 

cancer. In order to plan biopsy in three dimensions, we developed an automatic segmentation 

method based wavelet transform for 3D TRUS images of the prostate. The segmentation was 

tested in five patients with a DICE overlap ratio of more than 91%. In order to incorporate 

PET/CT images into ultrasound-guided biopsy, we developed a nonrigid registration algorithm for 

TRUS and PET/CT images. The registration method has been tested in a prostate phantom with a 

target registration error (TRE) of less than 0.4 mm. The segmentation and registration methods are 

two key components of the multimodality molecular image-guided biopsy system.
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1 Introduction

Systematic transrectal ultrasound (TRUS)-guided prostate biopsy is considered as the 

standard method for prostate cancer detection. The current biopsy technique has a significant 

sampling error and can miss at least 20% of cancers [1]. As a result, a patient may be 

informed of a negative biopsy result but may in fact be harboring an occult early-stage 
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cancer. It is a difficult challenge for physicians to manage patients with false negative 

biopsies who, in fact, harbor curable prostate cancer as indicated by biochemical 

measurements such as rising prostate specific antigen (PSA), as well as patients diagnosed 

with early-stage disease.

Although ultrasound imaging is a preferred method for image-guided biopsy because it is 

performed in real time and because it is portable and cost effective, current ultrasound 

imaging technology has difficulty to differentiate carcinoma from benign prostate tissue. 

MR spectroscopic imaging (MRSI) is playing an increasing role in prostate cancer 

management [2–3]. Various PET imaging agents have been developed for prostate cancer 

detection and staging, these include 18F-FDG [4], 11C-choline [5], 18F-fluorocholine 

[6], 11C-acetate [7], 11C-methionine [8], and other PET agents. 18F-FDG is widely used in 

cancer applications. However, it has low sensitivity in the primary staging of prostate cancer 

and poor detection of abdominal-pelvic nodes because of excretion of tracers in the ureters, 

bladder, and bowel. PET imaging with new molecular imaging tracers such as FACBC has 

shown promising results for detecting and localizing prostate cancer in humans [9]. FACBC 

PET images show focal uptake at the tumor and thus could be ideal information to direct 

targeted biopsy. By combining PET/CT with 3D ultrasound images, multimodality image-

guided targeted biopsy may be able to improve the detection of prostate cancer.

2 Multimodality Molecular Image-Guided Biopsy System

We focus on a PET/CT directed, 3D ultrasound-guided biopsy system (Fig. 1). The steps of 

targeted prostate biopsy are as follows. (1) Before undergoing prostate biopsy, the patient 

undergoes a PET/CT scan with FACBC as part of the examinations. The anatomic CT 

images will be combined with PET images for improved localization of the prostate and 

suspicious tumors. (2) During biopsy, 3D ultrasound images are acquired immediately 

before needle insertion. The 3D ultrasound images are registered with the PET/CT data for 

biopsy planning. Three-dimensional visualization tools guide the biopsy needle to a 

suspicious lesion. (3) At the end of each core biopsy, the needle tip position is recorded on 

the real-time ultrasound images. The location information of biopsy cores is saved and then 

restored in the re-biopsy procedure. This allows the physician to re-biopsy the same area for 

a follow-up examination. The location information of the biopsy cores can also be used to 

guide additional biopsy to different locations if the original biopsy was negative.

3 Automatic Segmentation of 3D Prostate Ultrasound Images

Many methods for semi-automatic or automatic segmentation of the prostate in TRUS 

images have been proposed. Active shape models (ASM) was proposed to segment the 

prostate [10]. Knoll et al. proposed a deformable segmentation model that uses one-

dimensional wavelet transform as a multi-scale contour parameterization tool to constrain 

the shape of the prostate model [11].

Our proposed method consists of the training and application stages. Two training TRUS 

images were used for wavelet features training and ten patients are used to make a 

predefined model. The prostate boundaries have been manually defined by specialists. A 

prostate shape model is created based on the allowable models of shape variations and its 
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probability. This model is employed to modify the prostate boundaries. The prostate textures 

are locally captured by training the locally placed Wavelet-based support vector machines 

(W-SVMs). With integrating local texture features and geometrical data, W-SVMs can 

robustly differentiate the prostate tissue from the adjacent tissues. The trained W-SVMs are 

employed to tentatively label the respective voxels around the surface into prostate and non-

prostate tissues based on their texture features from different Wavelet filters. Subsequently, 

after an affine transformation of the shape model to the pre-defined prostate region that 

optimally matches with the texture features of the prostate boundary, the surface of the 

model is driven to the boundary between the tentatively labeled prostate and non-prostate 

tissues based on defined weighting functions and labeled voxels.

TRUS image textures can provide important features for accurately defining the prostate, 

especially for the regions where prostate boundaries are not clear. Biorthogonal wavelets 

1.3, 1.5, and 4.4 are employed to extract the texture features of the prostate. Designing 

biorthogonal wavelets allows more degrees of freedom comparing to orthogonal wavelets. 

One additional degree of freedom is the possibility to construct symmetric wavelet 

functions. A number of W-SVMs on different regions of the surface model are placed and 

trained to adaptively label the tissue based on its texture and location. Each W-SVM is 

composed of 5 wavelet filter banks, voxel coordinates, and a Kernel Support Vector 

Machine (KSVM).

The wavelet filters are employed to extract texture features from TRUS images, and the 

KSVM is used to nonlinearly classify the Wavelet texture features for tissue differentiation. 

Each W-SVM corresponds to an individual sub-region in order to characterize and 

differentiate image textures locally and adaptively. All W-SVMs are trained to differentiate 

the texture features around its corresponding sub-regions in the training set. The trained W-

SVMs are employed to tentatively label each voxel into prostate and non-prostate tissues in 

the application stage. To find more accurate segmentation, the set of W-SVMs is trained and 

applied in 3 planes (sagittal, coronal, transverse). Three sets of 2-D Wavelet filters were 

located at three orthogonal planes and were trained in each plane. Therefore, each voxel was 

tentatively labeled in three planes as prostate or non-prostate voxel. Fig. 2 shows the 

algorithm flowchart of the segmentation method.

A prostate probability model was used for modifying the segmentation. To build the prostate 

model, ten segmented prostates were registered using an affine transformation. Other 

registration methods can also be used to register the prostate of different patients [12–14]. In 

this study, we used the registration approach that is based on the principal axis 

transformation. This method was chosen because of its computational properties, speed and 

simplicity. The prostate volume was translated and rotated with respect to each other. The 

principal axis transformation is known from the classical theory of rigid bodies. A rigid 

body is uniquely located by knowledge of the position of its center of mass and its 

orientation (rotation) with respect to its center of mass. The center of mass, inertia matrix, 

and principal axes can be determined for any rigid body. For simple geometric shapes, the 

principal axes coincide with the axes of symmetry. In general, an orthogonal coordinate 

system is set up with their origin at the center of mass. When computed in the principal axis 

coordinate system, the inertia matrix is diagonal. The basic parameters that were used for 
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registration of the prostate are the position of the center of mass and rotation of the prostate 

about the center of mass, and the lengths of the principle axes. These properties uniquely 

determine the location and geometry of the prostate in three-dimensional space. After 

overlaying these 10 registered volumes, a probability model was created for each voxel 

based on how many prostate models are labeled as a voxel of the prostate at that region.

4 Nonrigid Registration of TRUS and CT Images

Our non-rigid registration method includes three terms: (1) surface landmark matching, (2) 

internal landmark matching, (3) volume overlap matching. Let  and  are surface 

landmarks of the prostate from the segmented CT and TRUS images, respectively,  and 

 are internal landmarks e.g. urethra and calcification within the prostate on the CT and 

TRUS images, respectively. BCT and BUS represent the bladder neck region on the CT and 

TRUS images, respectively.

Inspired by [16–18], we design an overall similarity function to integrate the similarities 

between same type of landmarks and add smoothness constraints on the estimated 

transformation between segmented CT and TRUS images. The transformation between CT 

and TRUS images are represented by a general function, which can be modeled by various 

function basis. In our study, we choose B-splines as the transformation basis. The similarity 

function is written as:

Where

α, β, γ, and λ are the weights for each energy term. ESS is the similarity for surface 

landmarks, and EIS is the similarity for internal landmarks. EVM is the energy term for the 

bladder-neck volume matching; and ES is the smoothness constraint term. δ and τ are called 

the temperature parameter and its weighted term is an entropy term comes from the 

deterministic annealing technique [28]. ξ and η are the weight for the outlier rejection term. 

Matrixes pij and qkl are the fuzzy correspondence matrixes [25]. f denotes the transformation 

between CT and TRUS images, which is B-spline transformation in our method.

The overall similarity function can be minimized by an alternating optimization algorithm 

that successively updates the correspondences matrixes pij and qkl, and the transformation 
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function f. First, with the fixed transformation f, the correspondence matrixes between 

landmarks are updated by minimizing E(f). The updated correspondence matrixes are then 

treated as the temporary correspondences between landmarks. Second, with the fixed 

temporary correspondence matrixes pij and qkl, the transformation function f is updated. The 

two steps are alternatively repeated until there are no updates of the correspondence 

matrixes.

5 Results

We developed a 3D ultrasound-guided biopsy system for the prostate. The system uses: (1) 

Passive mechanical components for guiding, tracking, and stabilizing the position of a 

commercially available, end-firing, transrectal ultrasound probe; (2) Software components 

for acquiring, storing, and reconstructing real- time, a series of 2D TRUS images into a 3D 

image; and (3) Software that displays a model of the 3D scene to guide a biopsy needle in 

three dimensions. The system allows real-time tracking and recording of the 3D position and 

orientation of the biopsy needle as a physician manipulates the ultrasound transducer.

The segmentation method was evaluated by five patient data sets of 3-D TRUS. Fig. 3 

shows sample segmentation and its comparison with the corresponding gold standard. 

Quantitative performance assessment of the method was done by comparing the results with 

the corresponding gold standard data from manual segmentation. The Dice similarity and 

Sensitivity were used as performance assessment metrics in prostate classification algorithm. 

The numerical results of these evaluation criteria are shown in Table 1. The dice ratio is 

between 88.7%–95.0% among five prostate volumes. The mean and standard deviation of 

the dice function are 90.7% and 2.5%, respectively.

Fig. 4 shows the registration of ultrasound and MR images of a prostate phantom. The 

registration works well in the phantom experiment. We also evaluated the registration 

method using five sets of pre- and post-biopsy TRUS data of the same patients. The size of 

TRUS data is 244×244×175 voxels and the spatial resolution is 0.38×0.38×0.39 mm3. We 

used pre-biopsy images as the reference images and registered the post-biopsy images of the 

same patient. For five sets of patient data, the target registration error (TRE) was 0.88±0.16 

mm and the maximum TRE is 1.08±0.21 mm.

6 Discussion and Conclusion

We developed a PET/CT directed, 3D ultrasound-guided biopsy system for the prostate. In 

order to include other imaging modality such as PET/CT into 3D ultrasound-guided biopsy, 

we developed a 3D non-rigid registration method that combines point-based registration and 

volume overlap matching methods. The registration method was evaluated for TRUS and 

MR images. The registration method was also used to register 3D TRUS images acquired at 

different time points and thus can be used for potential use in TRUS-guided prostate re-

biopsy. Our next step is to apply this registration method to CT and TRUS images and then 

incorporate PET/CT images into ultrasound image-guided targeted biopsy of the prostate in 

human patients.
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In order to build a 3D model of the prostate, a set of Wavelet-based support vector machines 

and a shape model are developed and evaluated for automatic segmentation of the prostate 

TRUS images. Wavelet transform was employed for prostate texture extraction. A 

probability prostate model was incorporated into the approach to improve the robustness of 

the segmentation. With the model, even if the prostate has diverse appearance in different 

parts and weak boundary near bladder or rectum, the method is able to produce a relatively 

accurate segmentation in 3-D TRUS images.
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Fig. 1. 
Molecular image-directed, ultrasound-guided system for targeted biopsy. Top: The PET/CT 

and MRI/MRS were acquired from the same patient at our institution. PET/CT with FACBC 

shows a focal lesion within the prostate (white arrow). MR images also show the suspicious 

lesion in the gland. The 3D visualization of the pelvis and prostate can aid the insertion of 

the biopsy needle into a suspicious tumor target. Bottom: A mechanically assisted navigation 

device was developed to acquire 3D TRUS images from the patient. The prostate boundaries 

are segmented from each slice and are then used to generate a 3D model of the prostate. 

Real-time TRUS images are acquired and registered to the 3D model in order to guide the 

biopsy. To incorporate PET/CT into ultrasound-guided procedures, deformable registration, 

segmentation, fusion, and visualization are the key technologies.
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Fig. 2. 
The flowchart of the wavelet-based segmentation algorithm
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Fig. 3. 
2-D segmentation results in different planes: red lines are the gold standard boundaries and 

green lines are the segmentation boundaries. (a) Coronal plane (b) Sagittal plane (c) 

Transverse plane.
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Fig. 4. 
An ultrasound image (left) is registered with an MR image (middle) of the same prostate 

phantom. The 3D visualization shows the relative location of the ultrasound plane within the 

3D MR image (right) where green is the prostate and red is the lesion.
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