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Abstract
Breast tissue classification can provide quantitative measurements of breast composition, density
and tissue distribution for diagnosis and identification of high-risk patients. In this study, we
present an automatic classification method to classify high-resolution dedicated breast CT images.
The breast is classified into skin, fat and glandular tissue. First, we use a multiscale bilateral filter
to reduce noise and at the same time keep edges on the images. As skin and glandular tissue have
similar CT values in breast CT images, we use morphologic operations to get the mask of the skin
based on information of its position. Second, we use a modified fuzzy C-mean classification
method twice, one for the skin and the other for the fatty and glandular tissue. We compared our
classified results with manually segmentation results and used Dice overlap ratios to evaluate our
classification method. We also tested our method using added noise in the images. The overlap
ratios for glandular tissue were above 94. 7% for data from five patients. Evaluation results
showed that our method is robust and accurate.
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1. INTRODUCTION
In the US, the lifetime risk for women of developing breast cancer is one in eight [1].
Currently, the most common test for detection of breast cancer is mammography, but its
two-dimensional nature results in tissue superposition, limiting its clinical performance,
especially in women with dense breasts [2]. To overcome this limitation, extensive research
is being performed in x-ray based tomographic imaging of the breast. One of the
technologies being developed is dedicated x-ray breast computed tomography (breast CT)
[3–5], which can eliminate the issue of tissue superposition. Breast CT images are acquired
with similar methods to whole body CT, with major differences being the positioning of the
patient relative to the x-ray source and detector, and the use of a half-cone x-ray beam which
irradiates directly only the imaged breast. The resulting breast CT images consist of high-
quality volumetric data that provide excellent visualization of the breast tissue distribution.
Using breast CT images, an automatic breast tissue classification algorithm may be used to
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aid in the detection and diagnosis of breast cancer and for identification of women at high-
risk of developing breast cancer. In this study we present an automatic breast tissue
classification method that was tested using patient images acquired with a breast CT clinical
prototype (Koning Corp. , West Henrietta, NY) installed at Emory University’s Winship
Cancer Institute.

2. METHODS
Our classification method consists of three major steps: (1) The original breast CT images
are corrected by an image-based bias correction method; (2) The corrected breast CT images
are filtered using a multiscale bilateral filter; (3) The skin mask is obtained by a
morphologic method; (4) A modified fuzzy C-mean classification method is applied to
classify the filtered breast CT images.

Figure 1. shows typical breast CT images. Because of CT X-ray beam hardening [6] and X-
ray scatter, the resultant attenuation profile differs from the profile that would be obtained.
This can result in a cupped appearance and degrade image quality [7]. We used an image-
based method for automatic correction of this cupping artifact using a nonparametric coarse
to fine approach [8] which allows cupping artifact to be modeled with different frequency
ranges without user supervision. We defined an entropy-related cost function based on the
combination of intensity and gradient image features. Bilateral filtering can remove noise at
intra-regions while preserving the inter-region edge. The filtering process is a weighted
average of the local neighborhood samples, where the weights are computed based on
radiometric distance between the center sample and the neighboring samples. Bilateral
filtering can be described as follows [9]:

Where I(x) and h(x) denote input images and output images. Wσs measures the geometric
closeness between the neighborhood center x and a nearby point ξ; and Wσr measures the
photometric similarity between the pixel at the neighborhood center x and that of a nearby
point ξ. Thus, the similarity function Wσr operates in the range of the image function I,
while the closeness function Wσs operates in the domain of I. It smoothes images while
preserving edges by means of a nonlinear combination of nearby image values. The range
Gaussian is an edge-stopping function [10]. We reduce the width of the range Gaussian and
increase the width of the spatial Gaussian at every scale to filter breast CT images. In our
studies we used three scales.

In breast CT images, skin and glandular tissue have similar CT values [11], making them
difficult to differentiate based only on the intensity information. Therefore, we use position
information to classify the skin and glandular tissue. It has been reported that the skin
thickness is 1. 45±0. 30 mm [12,13]. We can calculate the voxel for the skin based on the
resolution of the breast CT images. In our studies, the breast CT voxel size is 0. 273×0.
273×0. 273mm3, so we constrain the skin thickness to seven voxels. We use a threshold to
get the mask for the whole breast and then use a 7×7 box to perform erosion operations in
order to get the mask for the tissue within the skin, i. e. the fatty and glandular tissue. By
subtracting the fatty and glandular tissue from the mask of the whole breast, we are able to
get the mask for the skin. We use a modified fuzzy C-means (FCM) algorithm to classify the
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breast CT images [14,15]. Based on the two masks, we perform two classifications, one for
the skin and the other for the fatty and glandular tissue.

We validated the classification using a variety of evaluation and analysis methods
[16,17,19–21]. In order to evaluate the performance of the classification method, the
difference between the classified and manually segmented results was computed using the
Dice coefficient [18]. In order to evaluate robustness of our method we added different
levels of Gaussian noise to the breast CT images and repeated the classification.

3. RESULTS
Figure 2 illustrates the visual assessment of the classification results of a breast CT image at
different noise levels. The standard deviation of the Gaussian noise is 3%, 5%, 8%, 10% and
15% of the maximum intensity of the CT image. Figure 3 shows the Dice overlap ratios
between the manually segmented results of original CT images and our classified results
with different noise levels. The overlap ratio is over 82. 9±0. 7% when the original image
was added with noise at the 10% level of the maximum CT intensity in the images. The
method is robust for noisy images up to 10% added noise.

The classification method has been evaluated with five patient images. Each patient had
different percentages of glandular tissue in the breast. We randomly selected three slices for
each patient and manually segmented the images using a multi-threshold method to evaluate
our classification results. Figure 4 shows the classification evaluation results of the five
patients. The overlap ratios were more than 94. 7%. Figure 5 illustrates the visual
assessment of the classification results on breast CT images with 8%, 11% and 34%
glandular tissue.

4. DISCUSSIONS AND CONCLUSIONS
We proposed a classification approach for dedicated high-resolution breast CT images to
classify breast tissue into three primary constituents of skin, fat and glandular tissue. A
mutiscale bilateral filter was designed to process the breast CT images before classification.
We compared our classified results with manual segmented results. Evaluation results
demonstrated the accuracy and robustness of this method for breast CT image classification.
Breast tissue classification from CT images can provide quantitative measurements for
breast tissue composition, tissue density and distribution with respect to ages, which may be
used for breast cancer detection and diagnosis and identification of high-risk patients.
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Figure 1.
Three breast CT image slices from one patient.
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Figure 2.
Classification results of breast CT at different noise levels. (a) The original breast image and
the classified result. (b)–(f) CT images with added 3%, 5%, 8%, 10% and 15% noise,
respectively, and the corresponding classified results.
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Figure 3.
Overlap ratios of the classification at different noise levels.
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Figure 4.
Overlaps ratios of glandular, fat and skin tissue for five patients.
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Figure 5.
Classification results of breast CT images of three patients (a) Breast CT images of three
patients who had a different percentage of glandular tissue (8%, 11%, and 34%). (b) Manual
segmented results. (c) Our classified results.
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