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Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated
breast CT images.
Methods: Images of a single breast of five different patients were acquired with a dedicated breast
CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce
noise while keeping edge information and were corrected to overcome cupping artifacts. As skin
and glandular tissue have similar CT values on breast CT images, morphologic processing is used
to identify the skin based on its position information. A support vector machine (SVM) is trained
and the resulting model used to create a pixelwise classification map of fat and glandular tissue.
By combining the results of the skin mask with the SVM results, the breast tissue is classified as
skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning
forest that is grown to segment the image using spatial and intensity information. To evaluate the
authors’ classification method, they use DICE overlap ratios to compare the results of the automated
classification to those obtained by manual segmentation on five patient images.
Results: Comparison between the automatic and the manual segmentation shows that the minimum
spanning forest based classification method was able to successfully classify dedicated breast CT
image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue,
respectively.
Conclusions: A 2D minimum spanning forest based classification method was proposed and
evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The
classification method can be used for dense breast tissue quantification, radiation dose assessment,
and other applications in breast imaging. C 2015 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4931958]
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1. INTRODUCTION

Breast cancer is the most commonly diagnosed cancer in
women.1 The chance of a woman born today in the United
States developing breast cancer throughout her lifetime if she
makes it to 80 yr old is 1 in 8.2 It has been well established that
earlier detection leads to drastic increases in survival rates.3

For women diagnosed with nonmetastatic breast cancer, the
risk of a distant recurrence is related to the number of axillary
nodes and tumor size,4 both of which increase in later stages
of the disease and are closely related.5 For these reasons,
detection methods that can determine the risk of development
and can detect the cancer at early stages are needed.

Traditional imaging modalities for breast disease include
mammography. Mammography compresses the breast and

uses low energy x-rays to obtain a 2D image.6 The 2D nature of
mammography results in tissue superimposition, which leads
to inaccuracies by giving the appearance of or masking an
abnormality.

Dedicated breast computed tomography (DBCT) is a rela-
tively new imaging modality that can provide 3D images of
the breast with a high spatial and contrast resolution. Although
conventional computed tomography has been extensively uti-
lized in clinical studies, it faces the challenges of high cost
and additional dose through the thoracic cavity when used for
breast imaging.7 DBCT has the additional advantage of imag-
ing the breast without the need for compression, increasing
patient comfort.8

Classification of breast tissue can provide quantitative
assessments of breast tissue composition, density, and
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distribution that can be used to evaluate the risk of breast
cancer or for dose assessment.9–11 In addition, changes in the
tissue density and distribution could also be monitored over
time to determine cancer risk.12 Chang and Lin have proposed
an automatic volumetric segmentation scheme by partitioning
a histogram into intervals which are subsequently used as
thresholds for the entire image.13 The use of support vector
machines (SVMs) to classify CT images has been studied
using different kernel approaches.14 Anderson et al. explored
the use of computerized scene segmentation for ductal lesions
in the breast CT image.15 Density based breast classification
has also been explored in an effort to create a rating for breast
tissue composition.16 Other methods have focused on cluster
detection to locate microcalcification clusters, and these tech-
niques have been used to assess breast cancer with constrained
modulus reconstruction.17,18 Huang and coworkers proposed a
radial-geometry edge detection scheme to measure the breast
skin thickness on coronal reconstructed breast CT images
and they found that the mean breast skin thickness was 1.45
± 0.30 mm.19 In another study by Shi and coworkers,20 a
similar algorithm was used to determine the skin thickness
and the result on the breast skin thickness was in excellent
agreement with Huang et al.19 In this study, we focus on the
classification of the tissue within the breast, which includes
the glandular and adipose tissue.

In this study, we investigated a minimum spanning forest
(MSF) classification approach for breast tissue classification.
Minimum spanning forests were introduced as a region based
method for image segmentation that is robust to image noise.21

The reasoning of minimum spanning forests is their ability to
incorporate local and global information into the segmentation
process by allowing the branches to span the entire image.22

Minimum spanning forests have been used in color images
for facial detection and segmentation23 and demonstrated the
robust nature of the segmentation algorithm even when simi-
larly colored features were in the background of the image. To
provide the required markers for the minimum spanning forest
algorithms to begin their growth, support vector machines
have been used and proven to be applicable for this purpose.24

Support vector machines have been designed for color image
classification on a pixelwise basis.25 They have also been

extensively studied for feature extraction from histograms of
images.26 SVMs in conjunction with other methods have been
successfully used for remote sensing data classification.27–31

Minimum spanning forest based methods have been used for
segmentation of other images such as hyperspectral images
and have been combined with support vector machines to
classify various regions.32 Other works have incorporated the
use of a probabilistic support vector machine to determine
highly probable markers for minimum spanning forest based
classification.24 This approach has shown that the minimum
spanning forest can improve the pixelwise classification of the
support vector machine and is a more robust segmentation
algorithm.

The proposed algorithm calls for pixelwise classification to
obtain markers to be used as roots of a minimum spanning
forest. The effectiveness of this algorithm comes from its
ability to effectively incorporate spatial and intensity based
information. It also allows for variations in threshold limits
and multiple parameters to be tailored specifically to breast
CT images. The robustness of the proposed algorithm was
demonstrated in patient data. The contribution of this paper
includes (1) the use of a minimum spanning forest and support
vector machine to accurately classify different tissue types in
breast data of human patients and (2) a dynamic dissimilarity
measure that better incorporates global information into a local
region growing method to account for local noise. Sections 2–5
will describe the classification methods, evaluation results, and
the application.

2. MATERIALS AND METHODS

The processing and classification of the breast CT images
consist of six major steps: (1) A cupping artifact correction
method is used to reduce the cupping artifacts in breast CT
images. (2) A multiscale bilateral filter is applied to remove
noise but retain edge information. (3) A morphologic method
is used to classify the skin of the breast. (4) A support vector
machine is used to perform pixelwise classification based upon
intensity information. (5) A minimum spanning forest is grown
from selected markers to combine spatial and intensity infor-
mation for image classification. Figure 1 shows the flow chart

F. 1. Outline of the minimal spanning forest algorithm.
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that summarizes the proposed method. Details on the methods
used for these steps are provided here. Image acquisition and
validation methods are also described in this section.

2.A. Cupping artifact correction for breast CT images

Cupping artifact correction was performed on the breast CT
images following the procedure previously reported by us.12

The main reason for the cupping artifacts is the inclusion of
scattered x-rays in the CT projections, as well as beam harden-
ing through the imaged breast. The method uses a coefficient
matrix of size 3×3×3 with all values set to 1 (null cupping
artifacts). These values are updated iteratively to decrease the
entropy of the corrected image. A minimization step is used to
modify each coefficient until the entropy value becomes stable.
When the entropy becomes stable, the number of coefficients
of the matrix is increased using a B-spline interpolation. For
this study, the number of bias functions was increased along
levels, set to 3, 5, 6, 9, and 11. The number of gray levels N1
was equal to 128 and the number of local gray levels N2 was
equal to 100. The entire process was implemented in 
to preprocess the breast CT images.

2.B. Morphologic operations for skin classification

To segment the skin tissue, the first step is a morphologic
operation to obtain a rough classification. The position infor-
mation is used to perform this procedure.12 The skin thickness
in breast is reported to be 1.45±0.30 mm.19,20,33 The voxel size
of the images is known from the image acquisition. A two-
mask method is performed to first exclude the background,
and second to obtain the inner mask that contains the tissues
beneath the skin. The first mask is created using a threshold
technique. The threshold is set at 85% of the intensity of the
second peak of the histogram. The first peak is the background,
and the second is the start of breast tissue. Thus, by subtracting
the voxels below this threshold, we obtain an outer mask
containing only breast and skin tissue. A 9 × 9 × 9 box is
then used to perform erosion operations so that an inner skin
mask can be obtained. By subtracting the inner mask from
the outer mask, the rough classification of the skin can be
obtained. This skin classification coupled with the subsequent
pixelwise classification of fat and glandular tissue will create
the complete map from which markers can be selected for the
following classification step.

2.C. SVM-based classification

The next step in this process involves the preliminary classi-
fication of each individual pixel. This provides a framework for
the minimum spanning forest to be grown on. Support vector
machines are well suited to evaluate images on a pixelwise
level in order to provide a classification for each individual
pixel. SVMs are able to handle large amounts of training and
testing data to provide accurate labeling of pixels. The output
of this classification will provide both a classification as well
as a probability map of all the pixels. The classification map
will simply label each pixel into its respective class, and the

probability map will give the probability that the pixel falls
into that class. The support vector machine from the LIBSVM
library34 was used in our experiment.

Support vector machines are often used for binary classi-
fication methods. Given a training set of instances and labels
(xi,yi), i = 1,. . ., L where xi is an element of Rn and y is an
element of {−1,1}L, the support vector machine solves the
following optimization problem to map the training vectors xi−
into a higher or infinite dimensional space using the function
ϕ:

min
1
2
wTw+C

L
i=1

εi

such that

yi
�
wTϕ(xi)+b

�
≥ 1−εi,

while

εi ≥ 0,

where C is greater than zero and is the penalty parameter for
the error term, and εi is the slack variable which provides a soft
margin and can be used as a measure degree of misclassifica-
tion of the data.13 The solution of this optimization problem
allows the SVM to find a linear separating hyperplane that
has the largest margin between the training data labels. The
kernel function K(xi,x j) = ϕ(x j)Tϕ(x j) allows for nonlinear
classifiers.35 For this study, the Gaussian radial basis function
was used as the kernel function which maps the data into a
Hilbert space of infinite dimensions.

The images were first normalized using the skin segmen-
tation previously obtained; this was accomplished with a
normalization factor n given by

n=
Sv

S̄
,

where Sv is an arbitrary skin intensity value which was set
at 150 for this study, and S is the set of pixels from which
the morphological erosion masked as skin. This normalization
was performed on all training and testing data prior to train-
ing the SVM model. This method for normalization allows
the spatial information to be used to normalize the intensity
information of each voxel.

2.D. Connected component labeling
and marker selection

There are two primary marker selection techniques that are
evaluated in this algorithm. The first technique is a proba-
bility based method developed by Tarabalka et al.,24 which
uses both spatial and probability information from the SVM.
The second technique stems from a previous method32 that
randomly selects a percentage N of the total pixels in each
classification to be used as markers. These techniques as well
as a simple threshold were evaluated. The simple threshold
technique only selects markers above a probability P to be
used as markers. This technique proved unstable and led to
great overclassification or underclassification depending on
small adjustments to P that varied greatly image to image;
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for this reason, only the first two techniques discussed were
implemented in the experiment. The first technique, using
probability data, ensures that both highly probable pixels and
large regions are given at least one marker, while the second
technique, using random markers, has the advantage of not
requiring any probability data and uses a majority voting over
multiple segmentations to acquire an accurate classification.

To implement the first technique, connected component
labeling must first be performed. In this experiment, a con-
nected component labeling algorithm using a union-find data
structure was used. The eight nearest neighbors surrounding
each pixel were used to find connected components. This con-
nected component labeling is performed on the SVM classifi-
cation map and finds connected regions of the same label type.
Each of these connected regions is then evaluated individually
and separated into two categories based upon the number of
pixels M . If a region has M or greater pixels, it is considered a
large region, and if it contains fewer than M pixels, it is a small
region. The following rules govern the selection of markers
based upon region type:

1. For large regions with M or greater pixels, the top
N percent of pixels within that region are selected as
markers.

2. For small regions ranging from 1 to M −1 pixels, only
pixels with a probability greater than P will be selected
as markers.

This method of marker selection is used with the motivation
to ignore the oversegmentation associated when no spatial
information is considered. It also ensures that for regions of
sufficient size at least one marker will always be present,
eliminating one cause of undersegmentation. It is important to
note that the markers selected need not be spatially adjacent
and are considered independent in our algorithm following
their selection. Previous studies24 have associated all markers
of the same type with one single tree root, and the proposed
algorithm allows each marker to have its own root and later be
classified by majority voting.

The second technique for marker selection implemented in
this study was the use of random markers. The motivation of
this technique is to avoid the need for a probability classi-
fication and to keep a consistent marker selection across all
tissue types. This algorithm first uses the classification map
to create lists of each label type. A percentage of pixels P
are then randomly selected from these lists and are used as
markers. This technique does not rely on accurate probabilities
for pixels, but instead requires that the segmentation process
be run multiple times, and a simple majority voting across all
instances determines the final classification map.

2.E. Minimum spanning forest spatial
and intensity segmentation

A minimum spanning forest provides the spatial component
of this classification algorithm. Given well selected markers,
a minimum spanning forest can accurately determine regional
boundaries making it well suited for breast CT images. Tissue

growth in the body often expands in connected regions that
a minimum spanning forest can follow and classify. To grow
a minimum spanning forest, edge weightings between each
marker must be calculated. The CT images evaluated in this
experiment were grayscale images rescaled to values ranging
from 0 to 255. Edge weightings between a pixel and its eight
nearest neighbors were calculated by taking a simple differ-
ence between the pixels given by

Wi, j =
�
Pi−Pj

�
. (1)

To construct a minimum spanning forest, we first define the
undirected graph G. This graph is constructed from the original
grayscale image, where each pixel is considered a vertex V ,
with edges E connecting a pixel to its surrounding neighbors.
For this experiment, we used a varying number of neighbors
for both 2D and 3D images. The set of weightings W described
in Eq. (1) are used to quantify the edges E of this undirected
graph. The graph G is then defined as G = (V,E,W ), from which
the spanning tree T can be grown.

From the undirected connected graph G, a spanning tree
T = (V,ET) can be constructed while ET is a subset of E. A
minimum spanning tree, Tmin, of the graph G is defined as the
spanning tree Tmin =

�
V , ETmin

�
such that the associated edge

weightings W of Tmin are minimal given by

Tmin ∈ argminT ∈ST





ei, j ∈ET

wi, j



, (2)

where ST is the set of all possible spanning trees constructed
from the graph G.36

Similarly, a spanning forest F = (V,EF) is defined as a
nonconnected graph without cycles while EF is a subset of E,
and the minimum spanning forest Fmin can be defined by

Fmin ∈ argminF ∈SF





ei, j ∈EF

wi, j



, (3)

with SF being the set of all constructed spanning forests, with
the same roots, of the graph G. To grow a minimum spanning
forest on a specific set of M roots, additional vertices ri, i
= 1,. . ., M are added. These vertices connect the root ri to a
previously determined marker and are used as the basis for
the growth of the minimum spanning forest. If an additional
root R is added such that R is connected with null weighting
to the additional vertices ri, a minimum spanning tree of the
graph G from the selected markers can be obtained. A min-
imum spanning forest is then created when the vertex R is
removed. Alternative minimum spanning tree algorithms37,38

can be implemented but Prim’s algorithm offers an efficient
implementation when using a binary heap to store the edge
weightings.39 This algorithm allows for the time complexity
of O(|E | log |V |).40

To grow the minimum spanning forest using Prim’s algo-
rithm, first the root markers and their associated edges are
added to the binary heap, while the vertices associated with
these markers are added to the classification map. Subse-
quently, the edge of minimal weighting, not connected to
a currently labeled pixel, is removed from the binary heap
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and that vertex is added to the classification map and given
the label of its associated marker. This iteration is repeated
until all pixels in the classification map have been labeled,
producing a segmentation map using a minimum spanning
forest.41

In this study, we modified previous 2D minimum spanning
forest algorithms to classify 3D CT images. This allows the
forest to grow along the same channels that the glandular tissue
expands along. Instead of segmenting individual 2D slices and
combining the results, this algorithm allows for the rooted
markers to expand along the third dimension. For this study,
the nearest six neighbors (north, south, east, west, up, and
down) were used to evaluate the 3D image classification.

This study introduced a new method for calculating dissim-
ilarity while the minimum spanning forest is being grown.
The weightings are initially calculated using Eq. (1). Prim’s
algorithm iteratively adds the reaming edge weightings of each
pixel that has been labeled. When these edges are added to the
binary heap, our modified algorithm created new edge weight-
ings that reflect the classification of the labeled marker. Two
methods can then be used to construct these new weightings.
The first method calculated an additional weighting between
the connecting pixel and the markers from which that label is to
be classified. The second method creates a weighting between
the connecting pixel and all the pixels connected to that pixels
branch of the minimum spanning forest. These methods create
a more robust segmentation process that better distinguishes
along noisy gradients. In this study, the first method was used
to determine dissimilarity; this method works well with CT
images because similarly classified regions have low varying
intensity values across the entire image. The second method
would be employed when intensity values vary between local
regions.

When random markers are used, the entire marker selection
and segmentation process are repeated C times and the mode
of each pixel’s classification is the label given to that pixel.

2.F. Majority voting

The classification of each pixel is given by the label of
the marker from which it is connected. Since a minimum
spanning forest is an unconnected graph, there will only be
one marker associated with each pixel. To account for er-
rors in classification stemming from a misclassified label, we
introduce a majority voting rule. Previous methods24 have
used connected components to determine regions and perform
majority voting across entire regions. The proposed method
instead calls for a majority voting to be performed for each
branch of the minimum spanning forest. This is illustrated
in Fig. 2. Each marker is given a unique label in the grow-
ing of the minimum spanning forest allowing for a greater
distinction when performing majority voting. This method
allows not only for large regions to be reclassified but also
region boundaries to be adjusted more finely, increasing accu-
racy along boundaries. This method calls first for a classifi-
cation map to be constructed with each marker being given
a unique label. Following each of these branches along the
minimum spanning forest gives the pixels associated with

F. 2. Visualization of the minimum spanning forest construction from
the marker selection (A) to the marker labeling (B) and to the complete
construction of the minimum spanning forest (C) that will be classified with
majority voting.

each marker; the mode of the SVM classification associated
with these pixels gives the label to be assigned to the entire
branch.

2.G. Breast CT image acquisition

The proposed method detailed above was tested on a set of
five different human subjects. The CT images were acquired
with a breast CT prototype system (Koning Corporation, West
Henrietta, NY). A breast CT scan involves acquisitions of
300 projections over a 360◦ revolution of the X-ray tube
and detector around a vertical axis in 10 s. The tube voltage
of the system is fixed at 49 kVp giving an x-ray spectrum
having a first half value layer of 1.39 mm Al.42 The maximum
allowed tube current is set at 100 mA, with the appropriate
tube voltage being selected automatically using two scout
projection images. This gave an average glandular dose of
approximately 8.5 mGy to an average breast.42 With a de-
tector pixel size of 388 µm, the reconstructed voxel size of
the image is 0.27× 0.27× 0.27 mm3. No scatter correction
method was used and the Feldkamp–Davis–Kress (FDK)
algorithm was used for reconstruction. The human study was
approved by the Institutional Review Board (IRB) of Emory
University.

2.H. Classification evaluation

To evaluate the results of the automatic segmentation and
classification, manual segmentation, which was conducted
by a radiologist with over 10 years of experience in CT
imaging, was used as the gold standard. Analyze 10.0 (An-
alyzeDirect, Inc., Overland Park, KS) was used to conduct
the manual segmentation prior to the computer classification
being performed. The manual segmentation was done in seven
steps that were performed in Analyze: (1) Smooth 3D im-
ages using a five-point 3D median filter. (2) Select three, 2D

Medical Physics, Vol. 42, No. 11, November 2015
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F. 3. Classification of the original image (A), the MSF result (B), the MSF with majority voting result (C), the gold standard by manual segmentation (D),
and the difference between the MSF result and the gold standard (E).

images from the 3D volume data for segmentation. (3) Obtain
the breast mask by setting a threshold for each of the three
selected images. (4) Create an inner skin mask by increasing
the threshold previously obtained in order to obtain a visu-
alization of the skin, along with manually selecting interior
boundary points of the skin. (5) Combine the breast mask
and the skin inner mask to segment the skin. (6) Use multiple
operator-selected thresholds that are individually applied to
small areas of the image to segment glandular tissue. The
presence of cupping artifacts restricts the feasibility to sepa-
rate glandular from adipose voxels over large regions. The
glandular tissue segmentation is a full combination of the
individual regions. (7) The fat is segmented by subtracting both
the skin and the glandular tissue from the breast mask. This
entire manual process required often over 1 h/image. Figure 3
shows the results of this final classification method on patient
data.

The automatic classification method has been tested in
both simulation and real patient data. The simulation data

have the ground truth for the validation of the algorithm.
The real patient data were used to test the applicability of
the automatic classification method. Simulated images were
constructed from the five real human subject images. These
simulated images were made using values taken from the
manually segmented gold standard data. As seen in Fig. 4,
the images were constructed with either high density or low
density glandular tissue. These images were created by rooting
a random walk inside the simulation image which grew to
create the glandular tissue. The high density and low density
images were created by controlling the distance of the walks
and the density of the roots. The simulation images were
created to be an accurate representation of the real patient data
by using randomly selected pixels from the real patients to fill
the respective classification labels.

To evaluate the accuracy of the automatic segmentation,
five different measures were used, the overall accuracy (OA),
average accuracy (AA) of the images, sensitivity, specificity,
and DICE overlap ratio,

F. 4. Classification of the low density simulation image (1A), the SVM result (1B), the MSF result (1C), the gold standard by manual segmentation (1D), and
the difference between the MSF result and the gold standard (1E), and classification of the high density simulation image (2A), the SVM result (2B), the MSF
result (2C), the gold standard by manual segmentation (2D), and the difference between the MSF result and the gold standard (2E).
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F. 5. The DICE overlap ratios for the fat, glandular, and skin tissue when the support vector machine was used for pixelwise classification for the simulation
images.

OA=
correctly classified pixels

total number of pixels
,

AA=

N
i=1

Si∩Gi
|Gi |

N
,

where Si are the voxels classified by the proposed algorithm
to a specific class i and Gi are the voxels manually classified
to a specific class i, and N is the number of images,

Sensitivity=
S∩G
|G| ,

where S represents the voxels of one type associated with the
automatic segmentation and G represents the voxels of the
same type associated with the manual gold segmentation,

Specificityi =
Sj∩G j�

G j

� ,

where Sj and G j are the respective voxels that do not belong
to the class i in the automatic and manual classifications,

Dice(S,G)= 2 |S∩G|
|S|+ |G| ,

where S represents the voxels of one type associated with the
automatic segmentation and G represents the voxels of the
same type associated with the manual gold standard segmen-
tation.

3. RESULTS

Figure 3 shows the result of the automatic method and
its comparison with the gold standard for a typical patient,
demonstrating the good performance of the automatic classi-
fication method in human patient data.

3.A. Results of simulated images

The support vector machine was able to classify the simu-
lated images with average DICE overlap ratios for the fat,
glandular, and skin tissues at 89%±1.7%, 84%±12.8%, and
94%±0.9%, respectively, as seen in Fig. 5.

The minimum spanning forest was then used and produced
average DICE overlap ratios for the fat, glandular, and skin
tissues at 96%±0.3%, 92%±4.5%, and 92%±1.4%, respec-
tively, as shown in Fig. 6. These simulation results demonstrate

F. 6. The DICE overlap ratios for the fat, glandular, and skin tissue when the minimum spanning forest was constructed in 2D using the optimal parameters
for the simulation data.
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F. 7. The DICE overlap ratios for the support vector machine classification when 1%, 2%, and 3% of randomly selected gold standard data was used for
training.

the ability of the algorithm to accurately classify the CT im-
ages with a high accuracy.

3.B. Results of support vector machine classification
for human data

The SVM algorithm classified the images on a pixelwise
basis successfully. This pixelwise classification with the lack
of any spatial information often leads to over classification.
There was hardly any undersegmentation noticed in any of the
classification images. Figure 7 shows the results of the SVM
classification, which resulted in an average DICE overlap ratio
for the fat, glandular, and skin tissue of 97% ± 1.2%, 88%
±6.5%, and 87%±5.4%, respectively. The classification was
completed for five patients with three slices per patient. The
high accuracy for the fat tissue was a promising start for the

classification but the large standard deviations in the glandular
and skin tissue required further classification refinement. This
provided a good framework for accurate marker selection from
which the MSF can be rooted.

3.C. Results of 2D minimum spanning forest
with probabilistic marker selection

The 2D minimum spanning forest grown from probabilistic
marker selection was evaluated and shown to produce accurate
classification. The 2D results were evaluated over a range of
parameters, including the percentage P of pixels to be selected
as markers from large regions. The results from this classi-
fication experiment are shown in Fig. 8. It is observed that
the optimal number of pixels to be chosen as markers which
provides the higher overall and average accuracy is 20% of the
large region.

F. 8. Accuracy of the minimal spanning forest algorithm with different parameters. The overall accuracy (A) and average accuracy (B) as a function of markers
selected from large regions. The overall accuracy (C) and average accuracy (D) shown as a function of pixel numbers required for a region to be classified as a
large region.
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F. 9. The DICE overlap ratios for the fat, glandular, and skin tissue when the minimum spanning forest was constructed in 2D using the optimal parameters
for the five subjects.

This was the number that was then used in subsequent
testing to evaluate the DICE overlap ratios as seen in Fig. 9 for
the skin, glandular tissue, and fat tissue. As is seen, an average
DICE overlap ratio of 97% ± 1.1%, 90% ± 4.5%, and 90%
± 2.1% was observed while using these optimal parameters.
The high accuracy of these results encouraged further evalua-
tion of additional marker selection that could be independent
of SVM probabilities and expansion into 3D.

3.D. 2D minimum spanning forest with random
marker selection

To reduce the number of parameters and eliminate the need
for probability measurements, the random marker selection
algorithm was tested and compared to the probabilistic marker
selection. The results of this comparison are shown in Figs. 10
and 11.

The overall and average accuracy of the random marker
selection shown in Fig. 10 falls short of the accuracy previ-
ously obtained by the probabilistic approach as seen in Fig. 8
but is still a viable alternative if probability data are unreli-
able. The DICE overlap ratios of the random and probabi-
listic marker selection were compared and shown in Fig. 11.
The random marker selection outperformed the probabilistic
marker selection for the fat and gland tissue, but did not
perform as well as the probabilistic method for the skin tis-

sue. The probabilistic method demonstrates higher sensitivity,
specificity, and DICE overlap ratios than the random marker
selection with multiple parameter variations to determine the
optimal values.

3.E. 2D minimum spanning forest with four
nearest neighbors

The 3D CT data increase the number of vertices and
edges greatly. Therefore, using pixels or voxels of fewer
than the nearest 8 or 26 neighbors was tested. The 4
neighbor approach yielded very similar numbers to using
the 8 neighbor approach, suggesting that a 3D minimum
spanning forest with less than the equivalent 26 neighbors
could be viable. The results of the four nearest neighbors
in comparison to the eight nearest neighbors are shown in
Fig. 12. The DICE overlap ratios are very close for both
methods.

3.F. 3D minimum spanning forest with six nearest
neighbors and varying surrounding slices

The minimum spanning forest was applied to 3D images
constructed around the slices that were manually segmented.
This process was performed for three, five, and seven total
slices to reduce computation time while still providing some

F. 10. Overall (A) and average (B) accuracies as a function of percentage of randomly selected pixels to be used as markers in the minimum spanning forest.
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F. 11. Comparison of DICE overlap ratios when the two methods are used for marker selection, i.e., randomly selected pixels as markers vs probabilistic
marker selection.

3D information. Table I shows the complete results for
multiple slices surrounding the slice of interest varying from
three to seven slices total. The data provided highly varying
results and demonstrated that the limited number of slices
was not sufficient to overcome the noise of the images.
The additional information from the third dimension did not
provide sufficient data for the minimum spanning forest to
gain accuracy. A larger amount of slices may be necessary
to obtain increased accuracy. However, the addition of more
slices is computationally costly.

After comparing different approaches and different
parameters, we used the optimal parameters for the classi-
fication of the five patient data. As shown in Fig. 13, the
average DICE overlap ratios are 96.9%, 89.8%, and 89.5%
for the fat, glandular, and skin tissue, respectively, using

the 2D image classification which produced the optimal
results.

3.G. Classification results compared with previous
classification results

The newly developed minimum spanning forest method in
2D produced DICE overlap ratios for the fat, glandular, and
skin tissue are 96.9%, 89.8%, and 89.5%, respectively. These
results were compared to the previous results given by our
laboratory,12 which produced DICE overlap ratios of 97.4%,
87.7%, and 89.4% for the fat, glandular, and skin tissues,
respectively. The improved accuracy for the glandular tissue
shows the ability of the minimum spanning forest that
grows in a similar fashion as the tissue. The minimum

F. 12. Comparison between two methods that use the nearest four or eight nearest neighbors to construct the edges for growing the minimum spanning forest.
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T I. Dice overlap ratio, sensitivity, and specificity of the 3D minimum spanning forest method when three, five, and seven slices are taken around the gold
standard slice.

Three slices Five slices Seven slices

Dice Sensitivity Specificity Dice Sensitivity Specificity Dice Sensitivity Specificity

Fat 0.928 ± 0.015 0.905 ± 0.031 0.953 ± 0.007 0.930 ± 0.015 0.928 ± 0.037 0.942 ± 0.010 0.940 ± 0.026 0.933 ± 0.042 0.924 ± 0.012
Subject 1 Gland 0.920 ± 0.014 0.955 ± 0.005 0.912 ± 0.034 0.929 ± 0.011 0.942 ± 0.013 0.931 ± 0.033 0.943 ± 0.006 0.953 ± 0.014 0.909 ± 0.035

Skin 0.902 ± 0.033 0.947 ± 0.043 0.929 ± 0.014 0.900 ± 0.010 0.944 ± 0.005 0.935 ± 0.014 0.848 ± 0.002 0.777 ± 0.000 0.944 ± 0.017

Fat 0.973 ± 0.001 0.976 ± 0.002 0.765 ± 0.016 0.966 ± 0.001 0.982 ± 0.005 0.665 ± 0.030 0.973 ± 0.001 0.984 ± 0.003 0.717 ± 0.015
Subject 2 Gland 0.815 ± 0.014 0.723 ± 0.022 0.972 ± 0.002 0.744 ± 0.015 0.602 ± 0.040 0.976 ± 0.005 0.800 ± 0.013 0.686 ± 0.024 0.974 ± 0.004

Skin 0.764 ± 0.007 0.901 ± 0.001 0.936 ± 0.002 0.741 ± 0.002 0.866 ± 0.002 0.923 ± 0.001 0.744 ± 0.016 0.815 ± 0.015 0.937 ± 0.001

Fat 0.964 ± 0.001 0.979 ± 0.006 0.827 ± 0.013 0.979 ± 0.001 0.993 ± 0.004 0.850 ± 0.020 0.976 ± 0.001 0.984 ± 0.003 0.836 ± 0.016
Subject 3 Gland 0.830 ± 0.005 0.799 ± 0.019 0.975 ± 0.005 0.854 ± 0.009 0.831 ± 0.028 0.988 ± 0.003 0.862 ± 0.007 0.830 ± 0.022 0.976 ± 0.003

Skin 0.899 ± 0.001 0.915 ± 0.002 0.947 ± 0.002 0.903 ± 0.000 0.909 ± 0.003 0.964 ± 0.002 0.907 ± 0.002 0.853 ± 0.004 0.957 ± 0.001

Fat 0.977 ± 0.001 0.992 ± 0.003 0.758 ± 0.012 0.973 ± 0.001 0.990 ± 0.002 0.734 ± 0.015 0.978 ± 0.001 0.993 ± 0.003 0.720 ± 0.007
Subject 4 Gland 0.798 ± 0.011 0.712 ± 0.017 0.979 ± 0.003 0.643 ± 0.015 0.580 ± 0.025 0.990 ± 0.001 0.754 ± 0.025 0.635 ± 0.015 0.983 ± 0.003

Skin 0.890 ± 0.002 0.835 ± 0.002 0.956 ± 0.001 0.899 ± 0.002 0.988 ± 0.003 0.938 ± 0.001 0.850 ± 0.005 0.860 ± 0.006 0.948 ± 0.003

Fat 0.966 ± 0.001 0.970 ± 0.005 0.936 ± 0.005 0.965 ± 0.004 0.977 ± 0.004 0.940 ± 0.006 0.963 ± 0.002 0.967 ± 0.007 0.935 ± 0.003
Subject 5 Gland 0.955 ± 0.000 0.955 ± 0.006 0.950 ± 0.004 0.856 ± 0.005 0.941 ± 0.007 0.971 ± 0.003 0.952 ± 0.025 0.948 ± 0.004 0.953 ± 0.006

Skin 0.895 ± 0.002 0.821 ± 0.004 0.963 ± 0.001 0.908 ± 0.003 0.930 ± 0.002 0.960 ± 0.004 0.905 ± 0.002 0.859 ± 0.004 0.958 ± 0.002

spanning forest takes approximately 3 min/slice to complete
the segmentation process, which is faster than the previous
method. The increased accuracy of the minimum spanning
forest can be attributed to its ability to incorporate global and
local information when performing the classification. The
global information of average intensity values for specific
tissue types is combined with the local information by
directly comparing differences in intensity between spatially
adjacent nodes. This allows the algorithm to expand and
grow in a way that mimics the growth of the actually tissue.

4. DISCUSSION

An automatic image classification method based on min-
imum spanning forests was proposed and evaluated for
breast CT images. The breast image was classified into
three distinct tissue types. Comparison of the automatic to
manual segmentation shows that the MSF-based classifi-
cation method was able to successfully classify dedicated
breast CT images with an accuracy of 90% for skin and

glandular tissue and 97% for fat tissue. This method is able to
accurately determine location of each tissue type, as well as
quantify tissue types and measure density within the breast.

The proposed algorithm modifies a minimum spann-
ing forest approach to be used with morphological skin
segmentation and a support vector machine classification.
This approach allowed for normalization of images prior
to the support vector machine classification for robust
classification. The minimum spanning forest could then
grow in 2D or 3D for accurate image classification. The
minimal spanning forest method uses pixelwise classification
to obtain markers to be used as roots of a minimum
spanning forest. The effectiveness of the proposed algo-
rithm comes from its ability to effectively incorporate
spatial and intensity based information. The classification
method may be applied to other breast images such as
tomosynthesis images or other imaging modalities such
as optical images, as demonstrated in our preliminary
study.43 Compared with other classification methods, the
proposed method allows for variations in threshold limits and

F. 13. The final DICE overlap ratios for each individual subject using optimal parameters specific to each patient.
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multiple parameters to be tailored specifically to breast CT
images.

The 2D minimum spanning forest classification method
proved accurate for segmenting fat, skin, and glandular
tissue. The classification results relied upon the support
vector machine for both classification and marker selection
for the minimum spanning forest. This was the largest
source of errors between subjects; if the support vector
machine misclassified or undersegmented smaller regions,
then the minimum spanning forest could not fully correct
those errors. Despite these errors, this method was still
able to provide an accurate classification of the breast CT
images.

An investigation into the difference between the automatic
and manual segmentation provides insight into the areas of
weakness and strength of the algorithm. The skin tissue is
of similar intensity to the glandular tissue and thus was a
source of error when glandular tissue lay close to the skin.
Manual segmentation is very time consuming, which would
ideally be performed over a much broader range of patients to
gather more slices of interest. With greater numbers of slices
manually segmented in each subject, further investigation of
3D minimum spanning forests could be achieved. In this
study, we used manual segmentation as the gold standard
because we used the data from human patients. An experi-
enced radiologist manually segmented the tissue from breast
CT images. As an alternative for evaluation, a breast phantom
could be created using 3D printing technology for accurate
evaluation of tissue classification in the future. In the current
study, we used simulation data to validate the proposed
classification algorithm. This simulation study allows us to
not only measure the volume of the tissue but also measure
the accuracy of the classification. One limitation of this
study was the small sample size of human subjects. Different
acquisition systems could be used to test this algorithm
on multiple imaging devices and the normalization method
could be evaluated across multiple platforms.

The use of a 3D minimum spanning forest was explored
and provided mixed results. 3D classification proved compu-
tationally expensive and the resulting classification could
not make full use of additional information in the third
plane. Further testing that includes additional 3D data could
prove valuable. The ability to incorporate the third dimension
provides valuable information for detecting thin fingerlike
growths that would otherwise be considered noise in the
other planes. To detect these growths however, a large
number of slices must be used. The addition of these slices
increases the number of vertices and edges used in the
minimum spanning forest construction. This causes a drastic
increase in computation time which is the main prohibiting
factor of this method. The algorithm was implemented in an
Intel Xeon 3.0 GHz processor in a Dell T7400 with 16 GB of
memory. Classification time was approximately 3 min/slice.
We used  for the implementation of the algorithm. The
code can be further optimized in order to reduce the time.
Furthermore, the minimal spanning forest algorithm can be
significantly speeded up by using parallel processing, graphic
processing unit (GPU), and ++ language.

Future studies that can take advantage of the unique
growing process of the minimum spanning forest would
be to investigate larger 3D data sets that would allow the
algorithm to follow different types of tissue in multiple
dimensions. Additional dissimilarity information, including
but not limited to, larger scaled intensity information could
also lead to more accurate classification. Future studies
would include coupling multiple dissimilarity measures be-
tween voxels in order to better distinguish tissue type.
Registered images from multiple modalities could also be
used to improve classification.

5. CONCLUSION

We developed an automatic image classification method
for dedicated breast CT images, which couples spatial and
intensity information from the images. By normalizing the
intensity of images with information gathered in the spatial
domain, we were able to train and make use of support vector
machines to provide a rough classification of the image. From
this SVM classification, root markers were automatically
selected and a minimum spanning forest was constructed to
follow the various tissue types and complete the classifica-
tion. Majority voting within the SVM classification of these
spanning trees then decided the class of each voxel. The
method was shown that it could be a quantification tool to
determine breast tissue compositions from dedicated breast
CT images.
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