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Purpose: Cardiac ultrasound simulation can have important applications in the design of ultrasound
systems, understanding the interaction effect between ultrasound and tissue and setting the ground
truth for validating quantification methods. Current ultrasound simulation methods fail to simulate the
myocardial intensity anisotropies. New simulation methods are needed in order to simulate realistic
ultrasound images of the heart.

Methods: The proposed cardiac ultrasound image simulation method is based on diffusion tensor
imaging (DTI) data of the heart. The method utilizes both the cardiac geometry and the fiber orienta-
tion information to simulate the anisotropic intensities in B-mode ultrasound images. Before the simu-
lation procedure, the geometry and fiber orientations of the heart are obtained from high-resolution
structural MRI and DTTI data, respectively. The simulation includes two important steps. First, the
backscatter coefficients of the point scatterers inside the myocardium are processed according to the
fiber orientations using an anisotropic model. Second, the cardiac ultrasound images are simulated
with anisotropic myocardial intensities. The proposed method was also compared with two other
nonanisotropic intensity methods using 50 B-mode ultrasound image volumes of five different rat
hearts. The simulated images were also compared with the ultrasound images of a diseased rat heart in
vivo. A new segmental evaluation method is proposed to validate the simulation results. The average
relative errors (AREs) of five parameters, i.e., mean intensity, Rayleigh distribution parameter o, and
first, second, and third quartiles, were utilized as the evaluation metrics. The simulated images were
quantitatively compared with real ultrasound images in both ex vivo and in vivo experiments.
Results: The proposed ultrasound image simulation method can realistically simulate cardiac ultra-
sound images of the heart using high-resolution MR-DTI data. The AREs of their proposed method
are 19% for the mean intensity, 17.7% for the scale parameter of Rayleigh distribution, 36.8% for the
first quartile of the image intensities, 25.2% for the second quartile, and 19.9% for the third quartile.
In contrast, the errors of the other two methods are generally five times more than those of their
proposed method.

Conclusions: The proposed simulation method uses MR-DTI data and realistically generates
cardiac ultrasound images with anisotropic intensities inside the myocardium. The ultrasound
simulation method could provide a tool for many potential research and clinical applica-
tions in cardiac ultrasound imaging. © 2015 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4927788]

Key words: cardiac ultrasound simulation, intensity anisotropy, diffusion tensor imaging, anisotropic
modeling
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1. INTRODUCTION

Cardiac ultrasound imaging, also called echocardiography,
is one of the most widely used examinations in cardiology.
Simulation of cardiac ultrasound images plays important
roles in the design of ultrasound systems and parameter
optimization,' understanding the interaction effect between
ultrasound and cardiac tissue>? and setting the ground truth
for validating quantification methods.*”

In order to simulate the tissue scattering in B-mode
ultrasound, different models have been proposed to approx-
imate the probability density of ultrasound speckle.” These
models, such as Rayleigh,® Rician,” and Nakagami distribu-
tions,? were proposed by considering different aspects during
ultrasound speckle generation at the transducer. Moreover,
a group of empirical probability distribution models for
speckle density in the B-mode images was also evaluated
by clinical cardiac ultrasound images.'” These models are
widely used in ultrasound simulation, speckle reduction, and
segmentations.”!! Moreover, several ultrasound simulators
were developed. Field II is a well-known simulation method
that linearly calculates the impulse responses of all scatterers.'
However, the spatial response methods are usually very
time-consuming. Thus, an acceleration step by decreasing
the simulated accuracy was proposed by convolving an
object with a point-spread function (PSF). A fast ultrasound
imaging simulation in K-space (FUSK) was designed by
Hergum et al. specifically for three dimensional (3D) cardiac
ultrasound series simulations, which is much faster than
Field II but maintains the similar speckle patterns.'? Another
simulator called COLE was developed to accelerate the
convolution of a 3D point-spread function by multiple 1D
convolution.!> Meanwhile, it also allowed the integration of
various simulated or measured beam profiles as a lookup
table.

Simulation technologies were applied to provide the
ground truths to evaluate different cardiac quantification
methods. Zhu et al. generated 3D synthetic series by Field 11
to validate the accuracy of their myocardial border detection
method.” Simulation was also utilized to evaluate the fiber
structure measurements from high-frequency ultrasound.'*
COLE was applied to simulate the 3D geometries of left
ventricle, which were utilized to validate their strain estima-
tion.*>!5 FUSK was also applied to validate the assessment
of left ventricle function.'® Furthermore, various efforts were
made on providing gold standards for echocardiography
strain analysis.'””!> In order to simulate more realistic
ventricular geometries and motion, Duan et al. integrated
an electromechanical model in the simulations.?’ Similar to
this idea, a biomechanical model based simulation method
was used to evaluate a sparse demons registration for
calculating 3D cardiac motion and strain.'> Based on these
methods, a database that simulated healthy, ischemic and
dyssynchrony cases was generated and used to evaluate five
different 3D ultrasound tracking algorithms.’ Based on the
generated motion field, another framework was proposed to
directly warp the real ultrasound sequence to generate a new
sequence.’!??
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Current simulation methods generate the myocardium as
a cloud of scatterers and did not consider anisotropic effects
that exist in the real cardiac ultrasound images. Moreover,
cardiac ultrasound imaging, especially in the short axis view,
usually contains anisotropic phenomena that severely affect
the intensity homogeneity as shown in Fig. 1(a), which
could lead to inaccuracy of cardiac segmentation or speckle
tracking.”® The relationships between ultrasound intensities
and anisotropic microstructures of myocardium have been
investigated since last 1970s.** For example, Miller and
coworkers thoroughly investigated the relationship between
myocardial anisotropy and echocardiography intensities.?> !
These studies indicate that the anisotropic intensities mainly
relate to the variable cardiac fiber orientations: the orientations
that are parallel to the ultrasound beams lead to the lowest
intensities and those that are perpendicular to the beam lead
to the highest intensities, as shown in Figs. 1(b) and 1(c).
A statistical parametric model of the myocardial anisotropy
was developed by modeling the myocardium as a matrix
of cylindrical scatterers.>> Crosby et al. further qualitatively
demonstrated the feasibility of simulating the anisotropy in
ultrasound images with special designed tissue structures.?
However, how to accurately perform these anisotropies in the
simulation of the complicated architectures of a real heart and
how to quantify their accuracies are still unsolved.

We propose a new simulation method for cardiac ultra-
sound images based on diffusion tensor imaging (DTI) data.
The method utilizes the 3D architectures of both cardiac
geometry and fiber orientations to simulate the B-mode
ultrasound images. This new method not only maintains the
accuracy for the myocardial geometries and speckles but also
adds the anisotropic intensity distributions in the simulation,
which are important for realistically simulating cardiac
ultrasound images. In this method, the anisotropy simulation
is guided by the 3D cardiac fiber orientations that are acquired
from MR-DTIL. Its corresponding cardiac geometry is imaged
by high-resolution structural MRI and serves as the ground
truth of the myocardium. Moreover, the simulated ultrasound
images are quantitatively evaluated by comparing the results
with real ultrasound images. Additional comparison between
the simulated images and the acquired ones of a failed heart
was also presented in this study.

This paper is organized as follows: Sec. 2 describes the
method of data acquisition, ultrasound simulation, and its
evaluations; Sec. 3 describes the results; and discussion and
conclusions are in Sec. 4.

2. METHODS

The proposed method contains three steps to simulate car-
diac ultrasound images, which are illustrated in Fig. 2. First,
the architecture (myocardial geometry and fiber orientations)
of real hearts is obtained from high-resolution MRI. Second,
the simulated ultrasound images are generated by using the
imaged architecture as a guide for the anisotropy simulation.
Finally, the simulated images are quantitatively evaluated
by comparing the simulation with the acquired ultrasound
images.
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FiG. 1. Relationship between ultrasound intensity and cardiac fiber orientations. (a) Two ultrasound images acquired from both orthogonal directions to image
one heart, where middle is the distribution of its fiber orientations. (b) Magnified heart region with main vertical fiber orientations and both corresponding
ultrasound images from orthogonal imaging directions. (c) Magnified heart region with main horizontal fiber orientations and both corresponding ultrasound
images from orthogonal imaging directions. The enlarged regions in both (b) and (c) demonstrate how different angles between cardiac fiber orientations and

ultrasound beam directions affect the ultrasound intensities.

2.A. Cardiac architecture acquisition

2.A.1. DTI data of human heart ex vivo

We used the geometry and fiber orientation data of a human
heart in diastole, which were shared by the Cardiovascular
Research Grid (CVRG) project.’* It was imaged ex vivo
by 1.5 T MR scanner (GE Medical System, Wausheka, WI)
with a four-element phased array coil. Its spatial resolution
was 0.4297 x0.4297 x 1 mm?> and its field of view (FOV) was
64 x 64 x 100 mm?>. The DTI scan was performed over 60 h
to acquire the cardiac fiber orientations. Note that ultrasound
images for this heart were not available.

2.A.2. DTI and ultrasound data of rat heart ex vivo

Therefore, in order to quantitatively evaluate the perfor-
mance of this proposed method, five ultrasound volumes of
fixed rat hearts were imaged by using a Vevo 2100 ultrasound
system (FUJIFILM VisualSonics, Inc., Toronto, Canada) with
a 30 MHz transducer. B-mode ultrasound images of the
hearts in the short-axis view were acquired from apex to
base, slice by slice, at a 0.2 mm thickness interval in a
FOV of 15.4x20x20 mm?. There was no additional time
gain compensation (TGC) to the acquisitions. In order to
eliminate the susceptibility artifacts, the rat heart samples
were completely embedded with agarose. Subsequently, the
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hearts were imaged by a high-field Biospec 7 T MR scanner
(Bruker Corporation, MA) using a RF coil with an inner
diameter of 25 mm. Before DTI data acquisitions, anatom-
ical images were acquired by using 3D FLASH sequence
with a voxel size of 0.078 x0.078 x0.156 mm?>, 3D matrix
=256x256x128, TE/TR =5/60 ms, FOV =45 x45 mm,
NEX =4, and scanning time = 32 h. Then, the cardiac fiber
orientations were imaged using the spin echo DTI sequence
with TR =13 500 ms, TE =27 ms, b-value =0 and 1000
s/mm?, gradient directions = 30, and 0.234 mm isotropic
resolution in a FOV of 30 x 30 x 20 mm?>.

2.A.3. Ultrasound data of rat heart in vivo

Additionally, the ultrasound images of a diseased heart with
pulmonary artery hypertension were imaged using an open-
chest in vivo acquisition approach. With the same ultrasound
machine, the in vivo images were acquired in the short-
axis view and without TGC. After the ultrasound imaging
experiment, the fiber orientations were acquired by MR-DTI
ex vivo on the 7 T MR scanner.

2.A.4. Data preprocessing

After data acquisition, the 3D binary geometric volume of
each heart was reconstructed from MRI and ultrasound im-
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FiG. 2. Flowchart of the whole ultrasound simulation procedure, including
cardiac imaging, ultrasound simulation, and quantitative evaluations.

ages, respectively, using a semimanual segmentation method
in the Analyze software (AnalyzeDirect, Inc., Overland Park).
Next, the tensors of DTI data were decomposed into three
eigenvectors, and cardiac fiber orientations were tracked
by a determinative method of fractional anisotropy.’->73%-36
Since different ultrasound imaging directions lead to different
segmental intensities, prior to the simulation, the architectures
of rat hearts acquired from MRI were first registered to
the corresponding real ultrasound volume. There are two
steps for the registration: (1) registration between structural
MRI geometries and the real ultrasound ones using a rigid
transformation based on the location of the apex and papillary

O3

‘510

(a)

2
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muscles®” and (2) relocation and reorientation of DTI-derived
fiber orientations using the rigid transformation.

2.B. Ultrasound simulation using DTI based
anisotropic modeling

2.B.1. Scatterer generation with the anisotropic
modeling

First, the whole phantom with the heart inside was
modeled as a regular grid of point scatterers with Gaussian
distributed backscatter coefficients. The myocardial regions
were modeled as grids of point scatterers based on the
imaged geometries of the hearts. The scatterer spacing
in each phantom was set as an isotropic size, i.e., the
same sizes in three dimensions. The backscatter coefficients
of these scatterers were initialized as zero-mean Gaussian
distributions.

Second, the backscatter coefficient of each scatterer inside
the myocardium was enlarged to its 10 times and was
then correlated with its corresponding fiber orientation by
using a directional smoothing filter with the ellipsoid shape.
After this processing, the simulated ultrasound images were
generated from the phantom by convolving the PSF with
the point scatterers of the phantom using multiplication in
the frequency domain (k-space). The backscatter coefficients
were correlated by an anisotropic model, which was validated
by Crosby et al.?® It was an ellipsoidal Gaussian filter
with its principal directions set to match the microstructure
orientations of cardiac fibers. The kernel function of this filter
is defined as

1{82 82 82
hocexpl—=[ = +—=+—= ), ()
2\o? o2 o2
1 2 3
where S}, S, and S3 are the variances in the filter space and
o1, 03, and o3 are the lengths of the semiprincipal axes of
the ellipsoid, as shown in Fig. 3(a). In Ref. 23, this filter
was utilized to simulate the ultrasound images of a special
designed sample by simplifying filter directions with set

—_—
—

9
[ V3(63)|

! |
V() ‘-: = -\ |

I Vi(en)

—
_ —
I.——‘

I

(b)

Fig. 3. Relationships among ellipsoid model, DTI eigenvectors, and cardiac fiber orientations. (a) Ellipsoid model, where o > 02 > 073. (b) Illustrated
relationship between three DTI eigenvectors and fiber microstructures: primary eigenvector corresponding to o7 indicates the fiber orientation, secondary
eigenvector corresponding to o3 indicates the sheet direction, and tertiary eigenvector corresponding to o3 indicates the sheet norm direction.
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transmural fiber orientations. However, for the whole heart
simulations, the cardiac architecture is more complicated than
an excised tissue sample and thus requires an approach to
modify the filter directions for each point scatterer.

In the present study, we propose to apply DTI eigenvectors
to describe the real microstructure orientations of variable
cardiac fibers. The ellipsoid shape at each myocardium grid is
then adjusted to match its real fiber orientations represented
by these DTI eigenvectors. Using this model, we can generate
the anisotropic distributed scatterers within the heart.

We define the three DTI eigenvectors as

Ulx U2x U3x
Vi= Uiy |» W= 0y |, Va= U3y |- 2)
Uiz U2z U3z

Here, V; is the primary eigenvector to indicate the fiber orien-
tation, corresponding to the o direction. V; is the secondary
eigenvector to indicate the sheet direction, corresponding to
the o, direction. Vj is the tertiary eigenvector to indicate the
sheet norm direction, corresponding to the o3 direction. These
relationships are shown in Fig. 3(b).

The principal directions of the ellipsoid in Eq. (1) are then

reoriented based on DTI eigenvectors following a rotation
th tiz 13

transformation. For a given rotation matrix (t21 tn 3], the
131 1t 133

’
X

new point (L//

X
) rotated from point (1/) can be represented as
z Z

x’ X
y|=T1y]|. (3)
7’ z

Thus, based on the rotation equation (3), the DTI eigenvectors

are considered as the derivation of a rotation Tpyy from the

1 0 0

unit vectors X = (0], Y = (1), Z= (O) in the filter space. This
0 0 1

rotation is calculated as

ViVaW3)=Tpm- (X Y Z), 4
Tomi= (Vi Vo V3). (5)

X

Thus, for a point (1/) in the filter space, its corresponding

Z
point of the ellipsoidal model (1) is

S X X
s|=Ton |y [=Vivav) |y | (6)
S3 4
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X
Then, the weight of point y) in the filter space is calculated

z
following Eq. (1). The whole procedure is illustrated in Fig. 4.

2.B.2. Ultrasound simulator

After scatterer generation, a simulator called FUSK was
utilized to simulate the ultrasound images because of its fast
simulation capability.'” There are three steps to simulate an
image by FUSK. First, each point scatterer of the object
is convolved with the PSF of FUSK by multiplication in
the frequency domain (k-space). The PSF is constructed in
the baseband of the k-space (spatial-frequency domain) and
each point scatterer is filtered with a baseband demodulated
antialiasing filter. After that, the ultrasound image is generated
from the complex demodulated data by the simulated detec-
tion, logarithmic compression, and scan-conversion steps.
Finally, the image is modified into a grayscale image
(0-255). The convolution approach in the k-space makes
the simulations much faster than impulse-response based
simulators such as Field II but keeps similar accuracies.

2.B.3. Simulation parameter settings

In order to demonstrate the effectiveness of the proposed
modeling, ultrasound simulations were first performed on
three different datasets: virtual fiber phantoms, the rat
hearts, and the human heart. The simulation parameters
including grids, modeling, and imaging parameters were set as
follows.

2.B.3.a. Ultrasound simulation for fiber phantoms. The
virtual phantom contained eight different cardiac fiber objects
(range from 0° to 135°) and each object has one set fiber
orientation, as shown in Fig. 6(a). The phantom volume size is
14x20x5 mm? and its scatterer space is set as 10 um for both
fiber objects and background. The backscatter coefficients of
the whole phantom are initialized with a zero-mean Gaussian
distribution and then the ones of the fiber objects are set as
10 times of their original values. After that, the backscatter
coefficients of the fiber objects are filtered by the anisotropic
model based on the corresponding fiber orientations. The
corresponding ultrasound image is then generated by a linear
array transducer with a central frequency of 30 MHz and the
bandwidth of 10 MHz. The corresponding aperture size is
9x5 mm.

2.B.3.b. Ultrasound simulation for rat hearts. During rat
heart simulations, the parameters were set to mimic the Vevo
MS400 linear array probe used in our experiments. The size
of the probe is 20 mm in length and 5 mm in thickness
with 256 elements. Its central frequency is 30 MHz and the
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bandwidth is 10 MHz. The corresponding aperture size is
9x5 mm. Based on the central frequency, the scatterer spaces
in the myocardium were all set as 10 um and were filtered
by the anisotropic model based on the DTI-derived fiber
orientations. This high scatterer density guarantees that the
speckle pattern fully develops. Finally, the ultrasound images
are generated after being log-compressed and converted into a
gray scale with a gain of 40 and a dynamic range of 45. During
this process, no TGC was applied in the simulation because
there is no TGC setting applied during our real ultrasound
acquisition. All simulated images were set in the short axis
due to the acquired images in this imaging view. Moreover,
for the purpose of myocardial evaluation, the scatterers inside
the backgrounds (without myocardium) of the image are set
as zero.

2.B.3.c. Ultrasound simulation for human hearts. For the
human heart simulation, a linear array probe with a central
frequency of 2.5 MHz and a bandwidth of 0.6 MHz was used.
Its aperture size is set as 13X 13 mm. Due to its lower central
frequency, the scatterer space in the human heart is set as
150 pm, which is much larger than the rat heart. The scatterers
inside the myocardium were then modified according to their
corresponding DTI-derived fiber orientations and the ones
inside the background were kept in their random distributions;
this did not distinguish the blood pool and the regions outside
the heart. Finally, the ultrasound images are generated after
being log-compressed and converted into the gray level with
a gain of 45 and a dynamic range of 60. During this process,
no TGC was applied in the simulation.

2.C. Proposed evaluation methods

To evaluate the anisotropic distributed intensities in the
simulated images, we developed quantitative evaluation meth-
ods. We utilize a segmental evaluation method to compare
the simulated results with the real ones in each myocardium
segment.>*3%-33 The method contains two main steps.

| Ultrasound |

Y-Z plane

X-Y plane

f_’ 0° 45° 90° 135°
X
v

()

5149

(@) (b)

Fic. 5. Illustration of the selected eight segments for the evaluation of
ultrasound simulations. (a) Ultrasound image of a rat heart. (b) Divided
eight segments of (a), where the white lines indicate the boundaries of the
segments.

First, the short axis myocardial region in the image is
equally divided into eight segments, which are arranged in a
ring, as shown in Fig. 5. This division is based on the variable
angles between the ultrasound beam directions and cardiac
fiber orientations inside this image.

Second, different statistical parameters are used to analyze
the ultrasound intensities of each segment. Mean and standard
deviations indicate the average intensity and its variations
in each segment. The box plot contains five parameters:
the first, second, third quartiles, minimum, and maximum,
which are also applied to describe the intensity distributions
inside each segment. Moreover, since ultrasound intensities
follow Rayleigh distributions, '* the histogram of each segment
is fitted by a Rayleigh distribution. Its probability density
function is defined as follows:

f(x)= ée-xz/@”z), x>0. %)

Here, o is the scale parameter of a Rayleigh distribution,
which is utilized to indicate the intensity distributions of each
segment.

Fic. 6. Ultrasound simulations of a virtual fiber phantom with different fiber orientations. (a) Illustration of the fiber phantom, where the top row indicates
the various fiber orientations in the Y—Z plane and the bottom row indicates the ones in the X-Y plane. (b1) Point scatterers randomly distributed. (b2) Point
scatterers filtered based on the fiber orientations. (c1) Ultrasound simulation of (b1), showing similar intensities for the eight objects. (c2) Ultrasound simulation
of (b2), showing different intensities for the objects with different fiber orientations.

Medical Physics, Vol. 42, No. 9, September 2015
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Fig. 7. Comparisons between real cardiac ultrasound images and the simulation results of three different methods. (al) Real ultrasound image. (a2)
Corresponding cardiac fiber orientations from DTI. (a3) Corresponding myocardial geometry from the structure MR. (bl) Simulated ultrasound image with
the scatterers filtered by the DTI-derived orientations (M1). [(b2) and (b3)] Mean, median, and quartile intensity comparisons of the eight segments between
(al) and (b1), respectively. (c1) Simulated ultrasound image with the scatterers randomly distributed (M2). [(c2) and (c3)] Mean, median, and quartile intensity
comparisons of the eight segments between (al) and (c1), respectively. (d1) Simulated ultrasound image with the scatterers filtered by the random orientations
(M3). [(d2) and (d3)] Mean, median, and quartile intensity comparisons of the eight segments between (al) and (d1), respectively. Green lines indicate the
results of the real image and blue lines indicate the results of the simulated images.

Furthermore, the performance of each parameter of the
whole image is evaluated by the average relative error (ARE).
The relative error (RE) for each segment is calculated as

RE(x) = 2= 100, 8)

X0
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where x is the measured value of the parameter and x is
its corresponding real value. Then, the ARE of the image is
calculated by averaging the REs of the eight segments. The
higher ARE values indicate a higher related error level of
the whole image, which means that the simulated result is
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FiG. 8. Comparisons of the histogram distributions of the eight segments in the real and three different simulated ultrasound images. The first row is the results
of the real image, the second row is the results of the proposed method M1, the third row is the results of M2, and the fourth row is the results of M3. Column 1
indicates the whole histograms of the four different images, respectively. Columns 2-9 are their corresponding histograms inside the eight evaluation segments,
respectively. The red lines inside all subimages indicate the corresponding Rayleigh distributions of the histograms and their scale parameters o~ are also listed.

more different from the real image, compared to the simulated
images with lower ARE values.

3. RESULTS
3.A. Simulations of virtual fiber phantoms

The simulated ultrasound images of the virtual fiber
phantom are shown in Fig. 6. This phantom contains eight
objects with different fiber orientations (0°—135°), illustrated
in Fig. 6(a). Following the general simulation procedures
without the anisotropic modeling, the simulation results in Fig.
6(cl) indicate that the intensities inside the eight objects are
similar to each other. In contrast, Fig. 6(c2) demonstrates that
the intensities are changed along different fiber orientations
of the objects when the anisotropic modeling filters the
point scatterers of the phantom. In this simulation, the fiber
orientations parallel to the ultrasound beams (0°) lead to the
lowest intensities while the perpendicular ones (90°) lead to
the highest intensities.

3.B. Simulations and evaluations of rat hearts

The ultrasound images of rat hearts were simulated based
on the imaged architectures from anatomical MRI and DTI
and then evaluated by comparing with the real ultrasound
images from the Vevo scanner. In order to demonstrate the
improvement of our proposed method (M1), its performance
was compared with other two methods: (i) randomly distrib-
uted point scatterers (M2) and (ii) random orientation filtered
point scatterers (M3). M2 is a general method utilized in the
current cardiac ultrasound simulations. M3 is set as a compar-
ison to demonstrate the necessity of the real connectivity of
fiber orientations. These simulations were performed on the
same cardiac architecture shown in Figs. 7(a2), 7(a3), and
7(b) with the same grid size and simulation parameters. The
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simulated results from the three methods (M1-M3) are shown
in Figs. 7(b1), 7(c1), and 7(d1). Moreover, these simulated im-
ages were divided into eight segments and were quantitatively
evaluated by comparing the simulated images with the real
ultrasound images shown in Fig. 7(al). Figures 7(b2) and 7(b3)
compares the mean, median, and quartile intensities of the
eight segments between the M1 result and the real ultrasound
image. The evaluation results of the M2 and M3 methods are
shown in Figs. 7(c2) and 7(c3) and Figs. 7(d2) and 7(d3),
respectively. These results indicate that the mean and quartiles
of the image intensities of the image simulated by M1 are
closer to the real ultrasound image as compared to the other
two methods. In particular, the M1 result is able to actually
simulate the intensity changes in different segments. However,
the M2 and M3 methods failed in some segments. Moreover,
the box plots of Figs. 7(b3)-7(d3) indicate that most of the

(b)

() (¢)

Fig. 9. Simulated ultrasound images from both orthogonal imaging direc-
tions of the same rat heart. (a) Cardiac fiber orientations from DTI. (b) Real
ultrasound image with vertical beam direction. (c) Simulated result of (b). (d)
Real ultrasound image with horizontal beam direction. (e) Simulated result
of (d).
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TasLe I. The average ARE results of five different parameters from five ultrasound volumes processed by the
proposed method and by the other two methods. Ten images for each volume are selected.

Ultrasound data I (%) o (%) Q1 (%) Q2 (%) Q3 (%)
Volume 1 19.0 £4.2 18.1+3.3 39.1+74 29.8+9.0 25.0=+4.1
Proposed Volume 2 21.1+1.6 19.5+0.9 41.8£2.7 28.8 +2.7 19.8 +£0.8
Volume 3 21.3+2.8 18.7 £2.1 334+7.6 247 +£3.7 18.8 £ 2.1
method (M1)
Volume 4 183 +£3.2 174 +42 31.7+7.6 23.1+34 21.0+3.6
Volume 5 15.6 £3.0 148 + 1.6 38.2+10.0 222+28 150+ 1.3
Volume 1 1554 +5.0 1139+3.5 4447 +348 2477137 1269+49
Randomly Volume2  113.8+£3.8 89.3+3.0 275.6 +7.8 1448 +7.6 78.7 3.1
generated Volume 3 105.0 £ 13.0 843 +102 219.6+319 1294=+179 752 +10.2
scatterers (M2)  Volume 4 1254 +5.7 92.5+49 3253 +129 176.1+£59 93.8+6.3
Volume 5 161.8 +5.1 1184 +4.0 421.8 + 185 2234 +8.7 1193 +4.9
Volume 1 90.8 £9.5 66.4 +7.1 2375+16.8 146.0 9.1 81375
Randomly Volume 2 68952 55.5+3.7 174.0 +9.3 95.3+6.0 50.6 + 2.8
filtered Volume 3 70.6 + 8.1 54.6 +£5.7 168.9 +21.2 98.9 +13.4 544 +59
scatterers (M3) ~ Volume 4 1054 +94 77.1+6.3 2733 +23.6 1533140 80.5+8.3
Volume 5 107.0 + 3.9 79.4 +3.1 2764 +13.1 1542 +85 83.2+3.9

Note: 7 is the mean intensity of the image; o is the scale parameter of Rayleigh distribution; Q is the first quartile of the
image intensities; Q5 is the second quartile; Q3 is the third quartile.

outliers and extreme values of the simulated image by M1 are
located in the upper regions, which is similar to the real image.
This corresponds to the myocardial speckle pattern, i.e., there
are some higher intensity speckles in a lower intensity region.
But M2 and M3 fail in this condition and theirs are mostly
located in the lower regions. Additionally, the histograms and
their fitted Rayleigh distributions were also compared and were
presented in Fig. 8. The scale values o of the fitted Rayleigh
distributions indicate that the histograms of the eight segments
from the M1 simulation are similar while the other two simula-
tions do not show the segmental changes. Moreover, although
the intensity distribution of the whole real ultrasound image
has a good correlation to the Rayleigh distribution, some of the
divided segments have poorer Rayleigh distributions such as
those shown in Figs. 8(a4) and 8(a8). But even so, the simulated
ultrasound image can still achieve the similar changes as the
real one does in Fig. 8.

Thus, based on these comparisons in Figs. 7 and 8, the
segmental similarities between the M1 simulation and the
real ultrasound image are higher than those of the other two
methods, because M1 captures the intensity changes caused
by the cardiac fiber orientations among different segments,
as the intensity changes are shown in the real ultrasound
image. Figure 9 demonstrates the ability of the proposed
method to actually simulate different anisotropic intensities
caused by two perpendicular imaging angles of the same
heart. Furthermore, the anisotropic intensities of papillary
muscles were also appropriately simulated based on their fiber
orientations in both simulated images.

Moreover, the ARE evaluations between the simulated
ultrasound images by the three methods (M1, M2, and M3) and
the real ones from five cardiac volumes are listed in Table 1.
Ten images from the base of the ventricles to the apex with a
0.4 mm slice space were selected from each volume for the
evaluation. Their AREs of five parameters (mean intensity,
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o, and first, second, and third quartiles) were averaged as the
evaluated errors for each volume. The AREs of our proposed
method (M1) are shown as 19% in the mean intensity, 17.7% in
the scale parameter of Rayleigh distribution, 36.8% in the first
quartile of the image intensities, 25.2% in the second quartile,
and 19.9% in the third quartile. In contrast, the evaluated errors
of the other two methods M2 and M3 are generally five times
more than those of our proposed method.

Additionally, a comparison between the simulated images
and the acquired images in vivo of a diseased heart is presented
in Fig. 10. Based on the ex vivo DTI data in Fig. 10(a), the
ultrasound image of the myocardium was simulated and is

Fig. 10. Comparison between the simulated myocardial ultrasound image
and the in vivo acquired one of a diseased rat heart with pulmonary artery
hypertension. (a) Fiber orientations of the heart from DTI ex vivo. (b) Simu-
lated ultrasound image based on DTI data. (c) Acquired ultrasound image in
vivo. The red arrows indicate the lower intensity regions of myocardium and
the yellow ones indicate the higher intensity regions, which are affected by
different fiber orientations.
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Fic. 11. Simulated myocardial ultrasound images of the left ventricle of a human heart. (a) Architecture of the human heart: the upper row is the geometry from
structure MR and the lower row is the fiber orientations from DTI. (b) Simulated ultrasound image from the short axis view. (c¢) Simulated ultrasound image

from the long axis view.

shown in Fig. 10(b). Comparing with the in vivo ultrasound
image of the same heart, it can be seen that the ultrasound
intensities of both images are all lower in the ventricular free
walls and septum (pointed by red arrows), where the fiber
orientations are parallel to the ultrasound beam directions. On
the contrary, the intensities are higher in the upper section
of the free wall (pointed by yellow arrows), where the
fiber orientations are perpendicular to the ultrasound beam
directions.

3.C. Simulations of a human heart

Ultrasound images of a human heart were simulated by
the proposed method. Figure 11 presented the simulated
myocardium of the left ventricle based on the imaged cardiac
architecture, which includes both myocardial geometry and
fiber orientations, as shown in Fig. 11(a). The simulated
ultrasound image from the short axis view is shown in
Fig. 11(b). The simulated ultrasound image from the long
axis view is shown in Fig. 11(c). In both simulated images,
the intensities indicate the similar anisotropic distributions as
the exhibitions of real human ultrasound images due to the
cardiac fiber orientations.

3.D. Simulation implementation and computation

The generation of point scatterers and their filtering was
implemented by MATLAB (The MathWorks, Inc., Natick,
MA). For rat hearts, it took approximately 4 h to generate
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these point scatterers by parallel computing on 12 cores of a
Dell Precision 7600T Workstation (Dell, Inc., Round Rock,
TX) and 5 min to simulate one 2D ultrasound image with
FUSK. Meanwhile, with the same parallel procedure, it took
approximately 1 h to generate point scatterers and 3 min to
generate one 2D image for the human heart.

4. DISCUSSION AND CONCLUSION

In this study, we proposed an ultrasound simulation method
to simulate the intensity anisotropies inside myocardial
regions. These anisotropies are derived from the variable
distributions of cardiac fiber orientations.***° This method
utilized the DTI-based fiber orientations to simulate the
anisotropic effects by processing the point scatterers with
an ellipsoidal filter. Although different angles between fiber
orientations and ultrasound beam directions lead to different
intensities, the proposed simulation method can model these
differences of myocardial intensities as the real imaging does.

We also proposed a segment-based evaluation method
to measure the difference between the simulated intensities
and the real ultrasound images. Different distributions of
cardiac fiber orientations lead to the segmental intensity
changes in the ultrasound images of the heart. Currently,
the general simulation procedures such as the M2 method
perform cardiac ultrasound simulations without considering
these anisotropies. Our proposed method can achieve better
cardiac ultrasound simulation than the other two methods
M2 and M3. In this study, we used M3 as an additional
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comparison to prove that the simulation of the anisotropic
effects in ultrasound not only needs the scatterer filtering but
also requires the connectivity of real fibers. Our proposed
method performs better than the other two methods because
they cannot generate the segment differences of intensities
as shown in the real images. In contrast, both M2 and M3
perform stable mean intensities in all segments. Furthermore,
the quantitative evaluations of different volumes supported
this conclusion. During the rat heart simulation with the high-
frequency transducer, our simulation uses the small grid size
(~10 pm) and the high transducer frequency (30 MHz) and
leads to realistic speckle patterns that are similar to those in
real ultrasound images. However, with the same parameters,
the simulated speckle patterns of M2 and M3 were different
from the real one, as shown in Fig. 7.

Additionally, Fig. 10 shows the comparison between the
simulated images and the in vivo acquired ones of the
same heart, which has heart failure led by pulmonary artery
hypertension. In this diseased heart, the geometry changed
its shape and the right ventricle became larger than normal
one. The results indicated that the simulation method can
successfully achieve the similar intensity anisotropy inside the
myocardium as the real in vivo images did, for the diseased
heart. Furthermore, the feasibility of simulating the ultrasound
images of a human heart with a clinical ultrasound probe at
lower frequency was also demonstrated in the study.

In the future work, the proposed method would be applied
to improve the evaluation quality of cardiac ultrasound
quantification methods such as myocardial segmentation*!
and motion tracking.'>*® For cardiac segmentation, the
myocardial regions with lower simulated intensities support
the use of the proposed method in these poor contrast
regions, which normally exist in real ultrasound images. The
myocardial boundaries acquired by structure MRI at a high
resolution are set as the ground truth. Then, the extracted
parameters of cardiac function, such as ejection fraction (EF),
mass, and volume, can also be quantitatively evaluated. For
myocardial motion tracking, this method can be applied to
the electromechanical model based simulations to generate
more realistic 3D ultrasound sequences.’ This would be more
suitable for the evaluation of optical flow or block-matching
based motion tracking, especially when a lower imaging frame
rate is used for the tracking.

Although this proposed method performed the anisotropic
effects on simulated images, there were still differences
between the simulations and the real ones. One reason is
that the real images that were acquired from the commercial
ultrasound machine were further optimized by postprocessing
filters but our results excluded this postprocessing. Thus, the
speckles in the real images are smoother than the simulated
ones. Moreover, current simulations including both human
and rat hearts focused on the simulation of the myocardium
only and they were all based on the imaging data of fixed hearts
ex vivo. For the in vivo ultrasound simulation, the motion
artifacts, blood flow and papillary muscles, and surrounding
organ tissue can also be added to the simulation model. In
particular, the right ventricular free wall should be carefully
considered because its signals are poor and can be easily
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affected by the lung or sternum. In this study, we did not
incorporate with TGC option because the utilized machine
could not output the TGC profiles and it would also cause
the changes in real segmental intensities. Additionally, for 3D
cardiac ultrasound sequence simulations, the current method
is still time-consuming and takes several hours to simulate
one volume. That is because the scatterer density would
be required for different ultrasound frequencies in order
to develop the speckle patterns. Higher frequency usually
requires higher scatterer density in order to reduce simulation
time. For example, in our case, it was set 10 um for 30
MHz and 150 yum for 3 MHz. Thus, the simulations, which
include both generating scatterers and simulating ultrasound
images, should be accelerated by parallel computing, c/c++
programming, etc.

Additionally, the cardiac fiber orientations were acquired
by high-resolution DTI in this study. Besides DTI, there
are several ultrasound based methods for the estimation of
cardiac fiber orientations, which include shear wave imaging,
backscatter inversion, and geometry based mapping.*’~* One
potential problem of using shear wave imaging method for
this simulation is that it would be difficult to decide the fiber
orientations in the 3D geometry, especially when simulating
the septum region. Although the echocardiography intensity
based method could provide the fiber orientations in 2D
images, the ultrasound speckles and other noises would cause
errors when estimating complicated 3D fiber structures.

In summary, this study proposed a new ultrasound simu-
lation method to simulate cardiac ultrasound images with the
consideration of myocardium anisotropies. The simulation
method can be used to provide a quantitative evaluation
method for evaluating the accuracy, robustness, and reliability
of cardiac ultrasound image processing and analysis such
as segmentation, edge detection, and speckle tracking. The
simulation method can be also applied to aid cardiac
surgery planning and offline training as well as various other
applications in cardiac ultrasound imaging.
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