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Abstract
An automatic segmentation framework is proposed to segment the right ventricle (RV) in
echocardiographic images. The method can automatically segment both epicardial and endocardial
boundaries from a continuous echocardiography series by combining sparse matrix transform, a
training model, and a localized region-based level set. First, the sparse matrix transform extracts
main motion regions of the myocardium as eigen-images by analyzing the statistical information
of the images. Second, an RV training model is registered to the eigen-images in order to locate
the position of the RV. Third, the training model is adjusted and then serves as an optimized
initialization for the segmentation of each image. Finally, based on the initializations, a localized,
region-based level set algorithm is applied to segment both epicardial and endocardial boundaries
in each echocardiograph. Three evaluation methods were used to validate the performance of the
segmentation framework. The Dice coefficient measures the overall agreement between the
manual and automatic segmentation. The absolute distance and the Hausdorff distance between
the boundaries from manual and automatic segmentation were used to measure the accuracy of the
segmentation. Ultrasound images of human subjects were used for validation. For the epicardial
and endocardial boundaries, the Dice coefficients were 90.8 ± 1.7% and 87.3 ± 1.9%, the absolute
distances were 2.0 ± 0.42 mm and 1.79 ± 0.45 mm, and the Hausdorff distances were 6.86 ± 1.71
mm and 7.02 ± 1.17 mm, respectively. The automatic segmentation method based on a sparse
matrix transform and level set can provide a useful tool for quantitative cardiac imaging.

1. Introduction
Echocardiography can evaluate the structures and functions of heart ventricles for clinical
diagnosis. Image segmentation of the ventricles can provide quantitative measures of heart
functions such as ejection fraction (EF). Segmentation of left ventricle (LV) from 2D
echocardiography has been widely investigated but the segmentation of right ventricle (RV)
is still a research problem (Rudski et al 2010). It has been reported that RV plays an
important role in both morbidity and mortality of the patients with signs of cardiopulmonary
diseases (Dimitroulas et al 2012). RV segmentation can be challenging because of two main
problems: (i) poorer image quality compared to that of LV; and (ii) the irregular geometry of
the RV shape, which makes its segmentation difficult in 2D echocardiography. Current
efforts for RV segmentation focus on 3D echocardiography (Angelini et al 2001, 2005,
Boettger et al 2004). However, increasing evidences from clinical studies emphasize that it
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is important to evaluate RV functions through routine 2D echocardiographic views
(Bangalore et al 2007, Rudski et al 2010). RV segmentation can provide diameters, area,
myocardium thickness, or fractional area change for routine echocardiographic examinations
as well as for other clinical applications such as quantifying the risk stratification and
prognosis in stress echocardiography (Bangalore et al 2007). RV segmentation can also be
used to calculate the indicator dilution curve of ultrasound contrast agents, which contains
the information for the determination of cardiac output, EF, and pulmonary blood volume
(Mischi et al 2005).

There are few reports on RV segmentations. On the other hand, there have been numerous
efforts devoted to LV echocardiographic segmentation (Noble and Boukerroui 2006). In the
previous works, shape prior restriction was emphasized in order to improve the accuracy and
reliability of echocardiography segmentations (Dietenbeck et al 2012). Chen et al
introduced a shape prior to the geometric active contour algorithm by computing the energy
function using both the image gradient and prior shape restrictions. This method was utilized
to segment both the epicardial and endocardial boundaries of LV based on the prior shape
outlined by experienced echocardiographers (Chen et al 2002, 2007). Taron et al used an
ellipse–shaped model to constrain the short axis LV border detection. It was based on the
assumption that the short axis endocardium of LV was similar to an ellipse, and which
limited its application to only the LV short axis (Taron et al 2004). Recently, Dienbeck et al
proposed a geometrically constrained level set algorithm to detect the whole LV
myocardium on 2D echocardiography (Dietenbeck et al 2012). They used two
hyperquadrics as the shape prior to control the evolving level set contours and an additional
thickness term. They proved that this algorithm could be applied to echocardiographic
segmentations from any view and also used for the initialization of speckle tracking
methods.

Although the shape prior restrictions were useful, these methods required interventional
initializations in order to segment each image. It requires much time and effort for
physicians to analyze the entire cardiac function in clinical examinations because each
echocardiographic series usually contains hundreds of images. Therefore, more efforts have
been made to develop the automatic segmentation framework. Bosch et al (2002) improved
the active appearance models by the use of an active appearance motion model for automatic
border detection in all of the echocardiographic image sequences. They used principal
component analysis (PCA) to analyze both the temporal and spatial shape patterns in the
sequences. Non-linear intensity normalization was also developed to match the intensity
distributions of ultrasound images. In order to analyze the cardiac functions from real-time
3D echocardiography, Zhu et al (2010) segmented both the endocardial and epicardial
surfaces of LV using an automatic algorithm that contained a coupled deformable model by
considering ultrasound speckle statistics and the myocardium thickness constraints.
Meanwhile, Pearlman et al (2012) developed an automatic segmentation method for LV
endocardial boundaries based on radio-frequency signals, and which could overcome the
inhomogeneities in B-mode images. This method utilized a two-frame linear predictor to
consider the spatio–temporal coherence of the data. It was validated by 28, 3D image
sequences. Paragios et al (2005) proposed a model-based approach to extract the LV
endocardium in each frame of the cardiac cycle. PCA and registration were applied in order
to set two, separate models for both systolic and diastolic moments. The segmentation was
then realized in two steps: the first step was the rough segmentation to dictate the new model
using a linear combination of the systolic and the diastolic models; the second step was to
refine the segmentation in order to accurately detect the endocardium boundaries. Zhou et al
(2004) used a unified framework for automatic initializations using boosted-shape detection
as a generic measurement process. This framework could automatically track the
endocardium in ultrasound sequences by propagating the local detection uncertainties of
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multiple shape candidates during shape alignment, fusion with the predicted shape prior, and
fusion with subspace constraints. They also presented a machine learning approach called
shape regression machine for efficient segmentation of medical images and the method was
validated for the LV endocardium from a B-mode echocardiogram of the apical, 4-chamber
view (Zhou 2010). Moreover, based on previous research, a pattern recognition and
database-guided segmentation method called AutoEF software (Siemens Medical Solutions,
Erlangen, Germany) was developed in the commercial ultrasound scanners. It could
automatically detect the endocardium in both end systolic and end diastolic
echocardiography and could then track the boundaries in other frames through the cardiac
cycle (Rahmouni et al 2008).

Although various methods have been used to segment the LV echocardiography, they cannot
be directly applied to RV segmentation because of the poor imaging quality in 2D
echocardiography and because of the irregular shape of the RV. However, RV myocardium
segmentations are required for comprehensive RV function analysis. Currently, the RV is
primarily segmented manually by experts, which is time-consuming and often requires more
than three hours for one image series.

In this study, we propose an automatic segmentation framework for the RV by combining
sparse matrix transform (SMT), a training model, and a level set algorithm. The
segmentation method can automatically segment both the endocardial and epicardial
boundaries of the RV from a series of 2D echocardiographic images from coarse recognition
to fine segmentations. Our contribution includes (1) the SMT-based level set algorithm, (2)
the RV training model, and (3) the application in RV ultrasound segmentation. In this paper,
we describe the flowchart of the segmentation framework in section 2, the results and
discussions in section 3, and the conclusions in section 4.

2. Method
2.1. Overview

Seven healthy subjects were imaged by the SA4–2/24 phased-array transducer and
SonixTouch ultrasound system (Ultrasonix Medical Corporation, Richmond, BC, Canada).
The imaging parameters are listed as followed: the central frequency of the transducer was
3.5 MHz; the imaging frequency per second was 27; all images were acquired in the
standard RV focused apical 4-chamber view (Rudski et al 2010); the dynamic ranges were
around 56; the gain was 56%; the persistence was 0; and the imaging data were saved as 8-
bit log-compress B-mode images. During the imaging periods, the subjects were required to
hold their breaths in order to keep a stable probe position. A radiologist specialized in
echocardiography (ZC) performed the image acquisitions from the human subjects.

Figure 1 shows the flowchart of the proposed segmentation framework, which is an
automatic process from coarse recognition through the entire echocardiographic series to
fine segmentation of each image. First, SMT is used to extract eigen-image from the whole
echocardiographic series. Second, an RV training model with both epicardial and
endocardial boundaries manually defined by a cardiologist (ZC) from 450 images are
registered to the eigen-images in order to recognize the RV regions. This step also
determines the corresponding transform relationships between the model and the eigen-
image. Third, based on the registration and a tricuspid tracking step, initialization regions
are determined for each image in this series by optimizing the shape of the training model.
Finally, each myocardium is segmented using a localized, region-based level set algorithm
following initializations.
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2.2. SMT eigen-images and registration
SMT is currently being successfully applied to face recognition because of its eigen-
decomposition ability (Cao et al 2011). Compared with other methods, such as PCA, SMT
has several advantages: first, it can improve the accuracy of the eigen-decomposition,
especially when the number of observations is less than the vector dimension; and second, it
runs faster than PCA (Cao et al 2011). Moreover, a graph-based SMT is able to estimate
more accurate eigen-images due to the graphical constraint (Bachega et al 2010). Therefore,
SMT is introduced to analyze the echocardiographic series containing much less sample data
than the image dimension.

Similar to face recognition, one continuous RV echocardiographic series is considered as the
data set that contains the similar RV shape in each image. SMT is applied to extract one
eigen-image from this data set as the corresponding standardized RV ingredients of the
whole series. Figure 2 indicates the SMT process for extracting the eigen-image from the
echocardiographic image series. After SMT eigen-decomposition, the components
corresponding to the first nine largest eigen-values are chosen as shown in figure 2(b). Each
chosen component indicates one connected structure in the echocardiography and
corresponds to the moving myocardium tissue in the whole dynamic series. Finally, the
eigen-image of the current series (figure 2(c)) is extracted by combining the chosen
components. In our case, the number of the first eigen-vectors is selected based on the
criteria that the sum of their corresponding eigen-values is bigger than 95%.

SMT extracts the myocardium regions with major motion in the image series and the
outcome is the eigen-image. SMT neglects stable structures such as the apex region, as
shown in figure 3(b). Because the RV shape differs from other regions such as atriums or
LV, it can be easily extracted from the SMT eigen-images by registering it with the mean
shape of the training models (figure 3(d)). This registration is based on an automatic
similarity registration method (Goshtasby 2005). Transform parameters such as rotation,
shift, and scaling, are used in the initialization step to adjust the training model. They restrict
the searching region during the initialization because this extracted RV shape indicates the
most probable location and shape of the RV in the entire series. Thus, these transform
parameters can reduce the calculation time so as to determine the best initialization shape
and also keep the model variances in reasonable ranges in order to increase the robustness.
Moreover, they can avoid the wrong segmentations in some circumstances such as rotated
imaging angles or irregular RV shapes seen in certain diseases (Rudski et al 2010).

Moreover, SMT synthesizes the entire series while considering more information than just
directly adapting training models to each image. It can reduce the effects of poor-quality
imaging, such as bright noises or missing crucial structures. Moreover, based on the SMT
and training models, this approach simulates the expert recognition process where
cardiologists follow in their clinical practice to utilize the whole dynamic echocardiographic
series rather than just one static image to determine the RV shapes and locations.

2.3. Optimized initialization and tricuspid tracking
Similar to the PCA (Cootes et al 1995, Li and Fei 2008, Qu et al 2008, Tsai et al 2003),
SMT can be used to capture the main shape components from the training samples. For the
training data, both RV endocardial and epicardial boundaries were manually defined from
those seen in various echocardiographic series. These boundaries are decomposed by SMT
as the mean shape and various components, after which new shapes derived from the
training models can be calculated following a linear transform of the largest amount of the
SMT components (Paragios et al 2005)
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(1)

where S is the new shape, s̄ is the mean shape of training model, Ui are the eigen-vectors,
and bi are the weight parameters related to the eigen-values. k is the number of the selected
components, which is set as the sum of selected eigen-values more than 95%.

During the initialization step, the most similar shape to the RV structures in each image is
chosen using a genetic algorithm (GA) (Goldberg 1989, Conn et al 1997) through
optimizing the weight parameters bi in their searching spaces, which contains initialization,
roulette wheel selection, crossover, and mutation steps. The algorithm is shown in figure 4.
GA selects a set of weight parameters to build a new shape which will be transformed
following the transform relationship between the mean shape and the SMT eigen-image.
Then the energy of the current images in the new shape region will be calculated as the
fitness function according to the criteria of the means separation energy function (Yezzi et al
2002):

(2)

where u and υ are the mean intensities inside and outside of myocardium region in the mean
shape (shown as gray region in figure 3(d)), respectively.

Considering the anatomy structures, both the RV and the right atrium are separated by the
tricuspid plate. However, the tricuspids are usually unclear and unstable in
echocardiography because of their fast motion, and which may lead to incorrect
initializations to include the right atrium. Therefore, a speckle tracking algorithm that has
proven useful for LV function analysis (Mondillo et al 2011) is introduced into this process
to indicate the tricuspid plate position. It begins with the first image at the end of systolic,
which can clearly identify the tricuspid plate automatically. The end point of the tricuspid
plate at the ventricular septum, which is usually clear during the cardiac period, is identified
and is quickly tracked through the entire series by a block matching method with the sum of
squared differences criteria (Friemel et al 1995). Based on the tracking results, every
initialization is restricted in a reasonable region during energy calculations.

2.4. Level set segmentation
After the previous steps, each image has an initialized mask for the following level set
segmentation. For example, the gray region in figure 3(e) corresponds to the negative level
set, while its epicardial and endocardial boundaries correspond to the zero level set. These
masks are not only used as initializations but also as the shape priors. The shape priors are
important for the following level set segmentation as their constraints can avoid the level set
contours leaking out from weak boundaries, especially when part of the RV structures is
missing in some images.

The localized, region-based level set framework, developed by Lankton (Lankton and
Tannenbaum 2008), has been applied to the LV myocardium segmentation (Dietenbeck et al
2012). We denote the myocardium boundaries as the zero level set of a signed distance
function ϕ. Similarly, the level set energy function is designed to contain three aspects:
image data, shape prior, and thickness constraint:

(3)
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Here, I is the image data, S is the model shape data, and λ is a weighted parameter. During
the curve evolution and minimization of the energy function E, the Eimage tends to make E
as small as possible when there is evolution nearer to the region edges. Alternatively, the
Eshape makes E as large as possible during the evolution farther from its original position.
The thickness constraint, HT, is defined as a Heaviside function:

(4)

and its derivative is defined as:

(5)

Where RT is the distance between the epicardial and endocardial boundaries at the zero level
set point and N̄ is the inward normal of a point x̄. When the distance between both
boundaries is smaller than RT, ϕ(x̄ + N̄ · RT) will be positive and HT(ϕ(x̄ + N̄ · RT)) be 1.
Otherwise it will be 0. The thickness constraint maintains the minimal thickness between
both boundaries as greater than an average value, such as 10 pixels. Based on this definition,
it can be drawn that HT · δT ≡ 0. Therefore, the image data term Eimage combining with a
thickness constraint can be written as:

(6)

Its corresponding energy minimized evolution equation is:

(7)

Similar to the energy calculation of the optimized initialization step, the means separation
energy is also applied in level set energy part to calculate the image data energy term.

Therefore, here  is the means separation energy function, ux and
υx correspond to the inside and outside average intensity values measured in the localized
region, and δ(ϕ(x̄)) is the Dirac function. The function B(x̄, ȳ) is a mask to make the
localization, defined as

(8)

where the point ȳ is within the localized region with radius r centered at x̄. The definition of
the model constraint term Eshape is:

(9)

Based on the identity HT · δT ≡ 0, the minimization of (9) can be achieved by evolving ϕ,
similar to the previous work (Dietenbeck et al 2012):
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(10)

Where ψ is the shape prior-related function meaning the distance between the zero level set
and its corresponding initialization edge of the shape prior. κ is the curvature of the evolving
zero level set.

2.5. Segmentation evaluation
Quantitative assessment of the method is conducted by comparing the segmentation results
with the gold standard data obtained from manual segmentation by a cardiologist. The Dice
similarity is used as the assessment metrics in myocardium segmentation (Dice 1945). The
Dice similarity is computed as follows:

(11)

where S and G represent the pixel set of the segmented regions obtained by the algorithm
and the gold standard data, respectively.

Both the mean absolute distance (MAD) (Comaniciu et al 2004) and the Hausdorff distance
(HD) (Huttenlocher and Rucklidge 1993) are used as the performance assessment metrics.
Suppose A and B are the edges of the automatic and manual results, respectively; and they
are represented by point sets: A = {a1, a2, ..an} and B = {b1, b2, ..bn}, MAD and HD are
defined as follows:

(12)

(13)

where d(ai, B) = minj ||bj − ai||, MAD is a global measurement, and HD is a similarity for
their locals.

2.6. Implementation
Some implementation details are described below. The algorithm was implemented in
MATLAB language. The reproduction of SMT covariance estimation was based on the
previous work (Bachega et al 2010, Cao et al 2011, Qin et al 2013). On the initialization
step, the criterion for choosing the training model parameter k was that the sum of the first k
eigen-values was bigger than 95%, which was 4 for our training model. Its corresponding
weight parameters bi were set in the range [−0.5, 0.5] for the GA initialization and
searching. The GA crossover and mutation parameters were 0.8 and 0.1, respectively. Its
stop condition was that the fitness function kept stable for more than 20 generations or when
the maximum generation reaches. On the bock matching step, the block size is 50 × 50
pixels and the maximum searching range is 10 pixels. Because this step only tracked one
block, it only costs 30 s for 120 continuous images. The weighted parameter λ in the level
set, which is related to shape prior term, was set as 0.4, because RV segmentation in 2D
echocardiography needed more shape prior to avoid the poorer imaging quality.
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3. Results
Eight dynamic image series containing 1,158 images were used as the testing data, which
were different from those images applied in the training data. RVs in these series were
segmented by our proposed method throughout the entire cardiac cycles. The automatic
segmentation results were evaluated by the manual gold standards using the DICE overlap
ratios, MAD, and HD scores.

3.1. Myocardium segmentation results
Figure 5 presents a segmented echocardiography during one cardiac cycle. Both green, solid
lines correspond to the epicardial and endocardial boundaries of the RV myocardium,
respectively; and their shapes change along the different heart-beating phases. Additionally,
the red dots in these images are the tricuspids indicating the points tracked by the speckle
tracking method. As shown in the image, the lateral walls of the RV are vague, and which is
a normal phenomenon in RV echocardiographic images affected by the lung or other
structures, although this automatic segmentation method still provides reasonable
segmentations. However, these poor RV imaging qualities, especially in the cases where the
lateral wall entirely disappears, increase the disagreement between both automatic
segmentation and the manual segmentations. The segmentation results of these selected
echocardiographic images were evaluated using the Dice, MAD, and HD methods. These
evaluations results for both the epicardial and endocardial segmentations are shown in table
1, where the mean epicardial Dice is 90.8 ± 1.7%, the mean endocardial Dice is 87.3 ±
1.9%, the mean epicardial MAD is 2.0 ± 0.42%, the mean endocardial MAD is 1.79 ±
0.45%, the mean epicardial HD is 6.86 ± 1.71 mm, and the mean endocardial HD is 7.02 ±
1.17 mm.

3.2. Comparison of three segmentation frameworks
Currently, there were few automatic approaches that were applied in RVsegmentation in 2D
echocardiography series. The main approach was still manual segmentation by
eachocardiologists. On the other hand, level set has been applied in the LV segmentations
and 3D RV segmentations in echocardiography (Angelini et al 2005, Noble and Boukerroui
2006). Therefore, we utilized the basic region-based level set with arbitrary initialization as
method 1 and its improvement with optimized initializations as method 2 to validate the
performance of our proposed method. We compared the abilities of the three different
segmentation frameworks in one image series. The details of these three methods are (I) the
classic, localized, region-based level set with means separation energy, (II) the same level
set but with an optimized initialization, and (III) our proposed method with an optimized
initialization and a shape prior for the segmentation of RV from echocardiographic images.
After the same iterations, the results are shown in figure 6, which indicate that specific
initialization improves the level set segmentation because the localized, regions-based level
set method can be sensitive to initialization (Lankton and Tannenbaum 2008). Without any
shape prior constraint, the first two segmentation methods did not perform well (figures
6(b2) and (c2)) because the RV is vague and has complicated structures in
echocardiographic images. However, our proposed method performs well and the automatic
segmentation result is close to the manual result (figure 6(d2)). Moreover, comparing with
the gold standards, their mean evaluations values are: 42.3% (DICE), 25.48 mm (MAD),
and 83.94 mm (HD) for method I; 72.8% (Dice), 4.08 mm (MAD), 22.02 mm (HD) for
method II; and 87.5% (Dice), 2.20 mm (MAD), and 7.52 mm (HD) for method III. These
results indicate that the procedures of specific initializations and shape priors are necessary
for the automatic RV segmentations in echocardiographic series.
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3.3. The effect of SMT-based transform on RV segmentation
Figure 7 compares the results from GA-optimized initialization with and without SMT-
based transform. Figure 7(d) shows the result of GA-optimized segmentation that directly
searches in the current image without any SMT transform relationship constraint.
Alternatively, figure 7(f) shows the result of the segmentation based on the initialization
with SMT-based transform. The SMT-based transform increases the accuracy of RV
segmentations by considering the information of the entire series rather than only that of the
current image. This is because the locations, rotations, and scales of RV regions usually vary
during different imaging angles or with different study subjects (Rudski et al 2010). Without
this transform, the initialization process can detect the wrong tissue such as the right atrium
(figure 7(d)). This problem also occurs when using the LV automatic segmentation methods
which only consider the current image information (Rahmouni et al 2008). Moreover, the
GA-optimized initialization process takes much less time after restricting the transform
relationships, because it only needs to optimize the weight parameters in smaller searching
ranges.

3.4. Robustness evaluation
We evaluated the robustness of the segmentation method. Five different images were
selected and were segmented 10 times following the same parameters. Dice, MAD, and HD
were used to evaluate the segmentation by comparing the manual and automatic
segmentation results. As shown in figure 8, the standard deviations of the Dice scores for
both endocardial and epicardial boundaries are approximately 0.5%. Moreover, the standard
deviations of MAD are less than 0.2 mm and those of HD are less than 0.8 mm. These
results indicate the strong robustness of the proposed segmentation method. The most
repeatable differences are derived from the GA-optimized initialization step because the GA
searching process was randomly selected. However, this robustness can be improved by the
use of more searching steps, by a more constrained searching range, and by combining
SMT-based transform.

4. Discussion
Automatic segmentation of the RV on ultrasound images is a challenging task. Although
various methods have been proposed for the segmentation of the LV, they cannot be directly
applied to segment the RV. The proposed segmentation method is able to segment both the
endocardial and epicardial boundaries at the same time. One observation which should be
noticed is that the general endocardial Dice scores are lower than the epicardial scores. One
explanation for which is that the endocardial region is smaller and more irregular than the
epicardial region, especially in the apical regions. Moreover, the papillary tissue also affects
the endocardial segmentation accuracy for both the manual and automatic results.

The proposed RV myocardium segmentation method focuses on the routine 2D imaging
examinations in a standard RV focused apical 4-chamber view. After the endocardium and
epicardium are segmented, other parameters, such as RV diameters, area, and myocardium
thickness, can be derived from the segmented images. The changes in the fractional area can
also be derived for routine echocardiographic examinations. These quantitative parameters
can be further explored for risk stratification and prognosis in stress echocardiography. The
segmentation method can also be used to calculate the indicator dilution curve of ultrasound
contrast agents, which is widely used in the intensive care unit and operating room for
cardiac parameter measurements. Although this method is proposed for 2D RV
segmentation, it can be extended to 3D RV echocardiographic volumes because all steps
including SMT, optimized initialization, and region-based level set in the proposed
framework can be applied to 3D data. Based on segmented 3D data, accurate RV functional
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parameters such as end dilation volume, end systolic volume and EF can be calculated for
clinical applications. When the segmentation method is extended to 3D RV images, the
establishment of the training model may need efforts from experts for manual segmentation.
Another challenge could be the fact that the 3D structure of RV can be complicated and that
the image resolution in 3D can be low. Although it may take some efforts to extend the
proposed automatic RV segmentation method to 3D echocardiography series, the framework
can be adapted and implemented for 3D imaging applications.

During the robustness evaluation, we randomly selected five images from different series
and each image was segmented 10 times and the Dice, MAD and HD parameters were
calculated. The results indicated the robustness for 10-time segmentations on one same
image. We considered that five random selected images were enough for the robustness
evaluation because the purpose of this step is to test whether the segmentation was robust for
the same image.

The implementation of the algorithm can be improved in the future. Currently, the total time
for one series of 150 continuous images is 3–4 h. There were several reasons leading to this
computation time: (1) the SMT needed computing time that depends on the image size; (2)
the images were initialized and segmented one after another; (3) the current algorithm was
implemented in MATLAB that was not efficient enough; and (4) we used a desktop
computer workstation for this implementation. The level set segmentation takes less than 2 s
for each image. In order to solve this problem, the computation time can be significantly
reduced if the algorithm is implemented in C/C++ as compared to the current MATLAB
codes. Furthermore, after SMT processing, parallel computing can be used to segment
multiple images at the same time using multiple CPU processors, which will dramatically
increase the computing speed. This paper focused on the feasibility and accuracy of the
algorithmic procedure. We plan the parallel processing and C++ implementation in our
future work.

5. Conclusions
We developed and evaluated an automatic segmentation framework for the right ventricle on
echocardiographic images. This framework can automatically segment both epicardial and
endocardial boundaries obtained from a continuous echocardiography series. The
segmentation method combines sparse matrix transform, a training model, and a level set
algorithm. Sparse matrix transform is used to extract the eigen-images of the
echocardiographic series in order to automatically identify the myocardium region in the
current series. Based on the extracted eigen-images, an RV training model is registered and
optimized as an initialization for the following localized, region-based level set
segmentation. Experimental results from human subject data demonstrated the performance
of the proposed segmentation framework for the right ventricle on ultrasound images. It can
also be applied to other imaging modalities such as cardiac MR imaging. The segmentation
method could also have potential applications for left ventricle segmentation as well as other
organs.
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Figure 1.
Flowchart of the automatic echocardiography segmentation framework from general
recognition to fine segmentation.
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Figure 2.
The eigen-image extracted from echocardiographic series. (a) Echocardiographic series. (b)
The first nine components of SMT eigen-decomposition, which captured the local spatial
structure of the myocardium. (c) The eigen-image of this series by summing up all absolute
values of those components in (b), where the intensity corresponds to the sum value.
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Figure 3.
The RV recognition from one echocardiographic series. (a) Echocardiographic series. (b)
The eigen-image extracted from the image series by SMT. (b) Corresponding black–white
image of eigen-image where the white region indicates the most probable motion region of
the myocardium. (d) The mean shape of the training model. (e) The registration result of the
training model and the SMT eigen-image, whose transform relationships contain shifts,
rotation, and scaling.
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Figure 4.
Illustrations of the GA optimized initialization to select the best shape from the training
model.
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Figure 5.
The segmented echocardiographic images in one beating period, where the green solid lines
are both epicardium and endocardium. The red dots in these images are the tricuspid
tracking points. The ECG curves below images indicate their corresponding phases in
cardiac cycles. The general dynamic ranges utilized in our experiment were around 56 and
they were log-compressed B-mode images.
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Figure 6.
The results are segmented by different frameworks where the green solid lines are the
detected boundaries of the myocardium and the red solid lines are their corresponding gold
standard. (a) is an ultrasound image needing segmentation. (b2) is the result segmented by
the localized, region-based level set with an arbitrary initialization mask (b1). (c2) is the
result segmented by the localized, region-based level set with an optimized initialization
mask (c1), but without any restriction. (d2) is the result segmented by the localized, region-
based level set with an optimized initialization mask (d1) and also restricted by the mask.

Qin et al. Page 18

Phys Med Biol. Author manuscript; available in PMC 2014 November 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
GA optimized initialization and segmentation results without and with SMT-based
transform, where green lines are segmented results and red lines are the corresponding gold
lines. (a) Mean shape of the training model. (b) Echocardiographic image to be segmented,
where locations, rotations and scales of RV regions are usually changeable because of
different imaging angles and different subjects. (c) GA optimized mask without SMT-based
transform. (d) Segmented result based on mask (c). (e) GA optimized mask with SMT-based
transform. (f) Segmented result based on mask (e).
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Figure 8.
Robustness of the segmentation method is validated by five different images, each of which
was segmented 10 times. Their results are evaluated by manual results using Dice, MAD
and HD, respectively. (a) Results of epicardium. (b) Results of endocardium. On each
plotted box, the central mark is the median, the edges of the box are the 25th and 75th
percentiles, the whiskers extend to the most extreme data points not considered outliers, and
outliers are plotted individually.
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