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Abstract. Isocitrate dehydrogenase (IDH) mutation status is an important marker in glioma diagnosis and
therapy. We propose an automated pipeline for noninvasively predicting IDH status using deep learning and
T2-weighted (T2w) magnetic resonance (MR) images with minimal preprocessing (N4 bias correction and nor-
malization to zero mean and unit variance). T2w MR images and genomic data were obtained from The Cancer
Imaging Archive dataset for 260 subjects (120 high-grade and 140 low-grade gliomas). A fully automated two-
dimensional densely connected model was trained to classify IDH mutation status on 208 subjects and tested
on another held-out set of 52 subjects using fivefold cross validation. Data leakage was avoided by ensuring
subject separation during the slice-wise randomization. Mean classification accuracy of 90.5% was achieved for
each axial slice in predicting the three classes of no tumor, IDH mutated, and IDH wild type. Test accuracy of
83.8% was achieved in predicting IDH mutation status for individual subjects on the test dataset of 52 subjects.
We demonstrate a deep learning method to predict IDH mutation status using T2w MRI alone. Radiologic im-
aging studies using deep learning methods must address data leakage (subject duplication) in the randomization
process to avoid upward bias in the reported classification accuracy.© 2019Society of Photo-Optical Instrumentation Engineers
(SPIE) [DOI: 10.1117/1.JMI.6.4.046003]
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1 Introduction
In 2008, it was reported that some glioblastoma multiformes
(GBM) harbor a mutation in a gene coding for the citric acid
cycle enzyme isocitrate dehydrogenase (IDH).1 Subsequent
studies revealed that the majority of low-grade gliomas (LGGs)
possess a mutant form of IDH, and that the mutant enzyme cat-
alyzes the production of the oncometabolite 2-hydroxyglutarate
(2-HG).2 Although this product of the mutant form of IDH is
believed to play a role in the initiation of the neoplastic process,
it has been observed that gliomas that contain the mutant
enzyme have a better prognosis than tumors of the same grade
that contain only the wild type IDH. This observation implies
that IDH mutated and IDH wild type gliomas are biologically
different tumors2 and led the World Health Organization to
designate them as such in the latest revision of their classifica-
tion of gliomas.3 Although a presumptive diagnosis of an IDH
mutated glioma may be made on the basis of magnetic reso-
nance (MR) spectroscopy for 2-HG,4–7 at the present time, the
only way to definitively identify an IDH mutated glioma is to
perform immunohistochemistry or gene sequencing on a tissue
specimen acquired through biopsy or surgery. Because the
differences between IDH mutated and IDH wild type gliomas
may have implications for their treatment, especially if inhibi-
tors of the mutant IDH enzyme currently in development prove

to halt their growth, there is interest in attempting to distinguish
between these two tumor types prior to surgery. As noted above,
one avenue of research involves using MR spectroscopy to
measure levels of 2-HG in the tumor.5,8–10 More recent studies
have attempted to utilize machine learning techniques to analyze
diagnostic MR images and predict IDH mutation status in glio-
mas using anatomic differences between the two tumor types.

Delfanti et al.11 demonstrated that genomic information with
fluid-attenuated inversion recovery (FLAIR) MR imaging could
be used for the classification of patient images into IDH wild
type, and IDH mutation with and without 1p/19q codeletion.
The main determinants for classification were tumor border
and location, with IDH mutant tumors having well-defined or
slightly ill-defined borders and predominantly a frontal locali-
zation and IDH wild type tumors demonstrating undefined bor-
ders and location in nonfrontal areas. Chang et al.12 developed
a deep learning residual network model for predicting IDH
mutation with preprocessing steps, including resampling, co-
registration of multiple MR sequences, bias correction, normali-
zation, and tumor segmentation. Using a combination of imag-
ing and age, the model demonstrated a testing accuracy of
89.1% and an area under the curve (AUC) value of 0.95 for
IDH mutations for all image sequences combined. Zhang et al.13

used 103 LGG subjects for training a support vector machine
for classifying IDH mutation status, achieving an AUC of 0.83
on testing data. In another approach, Chang et al.14 similarly
demonstrated that IDH mutation status can be determined using
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T2-weighted (T2w), T2w-FLAIR, and T1-weighted (T1w) pre-
and postcontrast images. Preprocessing steps in their work
included co-registration of all sequences, intensity normaliza-
tion using zero mean and unit variance, application of a three-
dimensional (3-D) convolutional neural network (CNN)-based
whole tumor segmentation tool for segmenting the lesion
margins, cropping the output tumor mask on all input imaging
sequences, and resizing individual image slices to 32 × 32 with
four input sequence channels. The mean accuracy result from
the model was 94% with a fivefold cross-validation accuracy
ranging from 90% to 96%.14 Common to all of these previous
methods is the involvement of preprocessing steps, typically
including some form of brain tumor presegmentation or region
of interest (ROI) extraction, and utilizing multiparametric or
3-D near-isotropic MRI data that are often not part of the stan-
dard clinical imaging protocol.12,14

In this work, we propose a fully automated deep learning-
based pipeline using a densely connected network model, which
involves minimal preprocessing and requires only standard
T2w images. A similar approach has been previously used for
the identification of the O6-methylguanine-deoxyribose nucleic
acid (DNA) methyltransferase methylation status and prediction
of 1p/19q chromosomal arm deletion.15 Clinical T2w images are
acquired in a short time frame (typically around 2 min) and are
robust to motion with current acquisition methods. Almost uni-
versally, high-quality T2w images are acquired during clinical
brain tumor workups. The preprocessing steps preserve the
original image information without the need for any resampling,
skull stripping, ROI, or tumor presegmentation procedures.
The advantage of a dense network model is that it passes the
weights from all the previous blocks to the subsequent blocks,
preserving the information from the initial layer and aiding in
the classification.

The ability to quickly and accurately classify IDH status non-
invasively can help with better planning, counseling, and treat-
ment for brain tumor patients, especially in cases where biopsy
is not feasible due to unfavorable tumor locations. A methodo-
logical contribution that we specifically make to the radiologic
deep learning literature is on further clarifying the approach to
data randomization for two-dimensional (2-D) models. In slice-
wise deep learning models, simple randomization of all
the slices across training, validation, and testing sets can lead
to subject duplication where different slices from the same sub-
ject are seen by the algorithm across groups. Adjacent slices of
the same tumor can carry significantly similar information, bias-
ing the measured slice-wise performance. Slice randomization
should be done on a subject-wise basis to avoid this pitfall.
The deep learning approach presented is fully automated and
can be easily implemented in the clinical workflow using only
T2w MR images. We also compared IDH image-based classi-
fication performance across several widely used deep learning
models.

2 Materials and Methods

2.1 Subjects

Two hundred and sixty subjects from The Cancer Imaging
Archive (TCIA)16 dataset were selected, including 120 high-
grade gliomas (HGGs)17 and 140 LGGs,18 and based on their
preoperative status from a pool of 461 subjects. The genomic
information was provided through the U.S. National Cancer
Institute’s Genomic Data Commons data portal.19 The genomic

data were available in the following three classes: IDH mutated,
IDH wild type, and not available (N/A). The genomic data of
the N/A type were excluded from the pool of 461 subjects.
MRI data were filtered for any visible artifacts in the images.
The final dataset consisted of 260 subjects based on the available
genomic information, MRI data, preoperative status, and lack
of image artifacts on the T2w images. Out of the 461 subjects
in the TCIA, 292 were preoperative. Out of these, 22 subjects
did not have T2w images. Of the remaining 270 subjects, 10 had
obvious motion artifacts, leaving 260 subjects in the final
dataset.

A standard 80:20 data split was employed with 80% training
and 20% testing (held-out). The 80% training was further split
into a standard 80:20 split of 80% training and 20% validation.
The final dataset of 260 subjects was thus randomly divided
into a training set (208 subjects, including ∼96 HGGs and
112 LGGs) and a test set (52 subjects, including ∼24 HGGs and
28 LGGs). This process was repeated separately for each fold
during the fivefold cross validation.

For each fold of the cross validation, 208 subjects with, on
average, 9728 axial slices of T2w images were selected for
training and validation (7177 slices: no tumor, 1110 slices: IDH
mutated, and 1441 slices: IDH wild type). The start and end
slices of the tumor (edge slices) were manually labeled for each
T2 dataset and verified by a neuroradiologist. These edge slices
were excluded from training to provide more robust ground truth
data representative of the tumor, rather than partial volume data
from edge slices. All slices were included for the testing set.
Each T2w slice was manually assigned only one label (no tumor,
IDHmutated, or IDH wild type). To address any class imbalance
due to the higher number of no tumor slices, class weights were
assigned based on the labels in the training dataset. Although
this was a slice-wise training model, slices of subjects in the
testing set were not mixed into the training set. This is a critical
step related to the data leakage problem in 2-D networks, espe-
cially for radiologic deep learning studies.20,21 This was neces-
sary to avoid bias during testing and an overinflation of the
measured accuracies. Fifty-two subjects with 2522 axial slices
(1839 slices: no tumor, 299 slices: IDH mutated, and 384 slices:
IDH wild type) were not included in the training or validation
and were used for testing for each fold. Classification was done
on a slice-wise basis (2-D) followed by majority voting across
all slices to provide a patient-level classification. Note that we
use the term slice-wise to refer to classification of each 2-D axial
image for IDH status. Similarly, the term subject-wise is used for
classification of IDH status for each subject. We used a straight-
forward majority voting scheme to determine subject-wise
classification based on the majority IDH classification of the
individual 2-D slices. Subjects classified with an equal number
of IDH mutated and IDH wild type tumor slices were assigned
to the IDH wild type group.

2.2 Image Processing

Minimal standard preprocessing of the T2w images from the
TCIA dataset was performed prior to training (Fig. 1). The
images were converted from DICOM to NifTI format using
dcm2nii,22 bias corrected to remove radio frequency inhomoge-
neity using the N4 bias correction algorithm, zero-mean
intensity normalized to between −1 and 1, and resampled to
128 × 128 image dimensions to improve the computational
efficiency during training. The Inception V4 model, however,
required an input image size of 299 × 299 as a design constraint
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of this model when originally constructed.23,24 The total prepro-
cessing time for each subject was <1 min.

2.3 Model Training

The following models were used for classification of the T2w
images into IDH mutated and IDH wild type classes: residual
network (ResNet-50), densely connected network (DenseNet-
161), and Inception-v4. Our choice of network architecture
was based on the best performers from the ImageNet challenge
for 2015 (ResNET) and 2017 (DenseNet and Inception V4). The
DenseNet model, designed by Huang et al.,25 received the best
paper award at the Conference on Computer Vision and Pattern
Recognition 2017. The models were trained with the Pycharm
and Python IDEs using the Keras python package with
TensorFlow backend engines. Fine tuning of the three classes
was performed on all models. The three-class labels for each
slice were no tumor, IDHmutated, and IDHwild type. The mod-
els were originally trained on ImageNet data with three channels

(RGB). For our implementation, the three-channel input was
provided as a central slice with the two immediate surrounding
slices. If the central slice was the first or last slice, the surround-
ing slices were assigned as no value.

2.4 ResNet-50 Model

The residual network was implemented as proposed by He
et al.26 Each residual connection adds the input of the block
to the output, helping to preserve information from the previous
block. A deep residual network framework was added to the
model while maintaining parameter numbers to address issues
with convergence in the originally proposed model. The residual
net used the kernel initializer as “He normal” for weight initial-
ization. On top of the residual network model, a flattened output
was added and sent to the dense layer with the rectified linear
unit (relu) activation and a dropout of 0.5. The final layer of
the model was the classification layer with a softmax activation
and the number of classes as the output. The residual network
model used for training was ResNet-50 (Fig. 2).

2.5 Inception-v4 Model

The Inception model architecture was designed by the Google
research team.23,24 The Inception-v4 model is a deep architecture
with 41 million parameters and the model is designed with
inception blocks and reduction blocks. The inception blocks are
used in a sequential manner with reduction blocks except for
the last inception block, which has an average pooling layer and
a dropout layer before the classification layer.

2.6 DenseNet-161 Model

The DenseNet model was based on the design by Huang et al.25

This model was inspired by the residual network model, which
allows the residual connections to pass information from the

Fig. 1 Flowchart of preprocessing steps prior to training the deep
learning model.

Fig. 2 Architecture of ResNet-50 (50 layers) model used for IDH classification.
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previous layer to the subsequent layer. Dense networks have
advantages over other networks by alleviating the vanishing
gradient problem with feature propagation through the dense
connection to the subsequent layers.

The features passed to the subsequent layers in the DenseNet
model are not added by summation but are combined using con-
catenation. Each block has connections from the previous block
such that L ¼ number of blocks and the number of connections
for each block is L × ðLþ 1Þ∕2, creating a dense connectivity
pattern or DenseNet. The DenseNet-161 model architecture is
shown in Fig. 3, which illustrates a five-block approach where
the first block is the input layer and each of the subsequent four
blocks are characterized by 2-D convolution layers with filter
sizes of (1 × 1) and (3 × 3), respectively. The pretrained model
was used to transfer learning and was used for classification
based on the trained information. A 161-layer DenseNet model
was used for model training.

2.7 Training, Testing, and Statistical Analysis

Model training was performed on a Nvidia Tesla P100, P40,
K40/K80 GPU with 384 GB RAM and the model accuracy was
assessed for 200 epochs. The optimizer used for training was the
stochastic gradient descent27 as described by Zhang28 and the
learning rate was set to 10−7, with a decay of 10−7 and momen-
tum of 0.8. Data augmentation was performed on the training
dataset, which included vertical and horizontal flip, random
rotation, translation, shear, zoom shifts, and elastic transforma-
tion to minimize overfitting the data. The results were analyzed
by assessing accuracy, precision, sensitivity, specificity, and F1
score values. Slice-wise model testing was performed based on
the output from the 2-D model. Subject-wise classification was
performed based on majority voting across IDH mutated and
IDH wild type tumor slices. This classification accuracy was
computed on the independent test dataset that was separate
from the testing and validation datasets. Comparison between
the models across fivefold cross-validation accuracies was per-
formed using the Mann–Whitney rank sum test.

2.8 Model Training Times

The DensetNet-161 model took ∼110 h for training, while the
ResNet-50 model and the Inception V4 model took ∼56 and
∼32 h, respectively. Testing time for individual subject classi-
fication was <40 s for all models.

3 Results

3.1 Training, Validation, and Testing Accuracy

Table 1 shows the accuracy comparison between the ResNet-50,
DenseNet-161, and Inception-v4 models. The DenseNet-161
model outperformed the Inception-v4 model and performed
slightly better than the ResNet-50 model. Averaged across the
fivefolds, the slice-wise accuracy of the DenseNet-161 model
was 90.5� 1.0% with an AUC of 0.95 on the held-out test data-
set of 52 subjects. The mean slice-wise accuracies of the Resnet-
50 model and the Inception-v4 model were 89.7� 1.1% with
an AUC of 0.95 on the held-out test dataset and 76.1� 3.7%
with an AUC of 0.86, respectively. Testing times across slices
for each subject using the DenseNet-161, ResNet-50, and
Inception V4 models were ∼40, ∼15, and ∼30 s, respectively.
Subject-wise determination of IDH mutation status by majority
voting across classified slices took <1 s.

3.2 Accuracy, Precision, Recall/Sensitivity,
Specificity, F1 Score, and AUC Comparison

Average metrics were computed across folds and classes. The
classification accuracy, precision, recall/sensitivity, specificity,
F1 score, and AUC for slice-wise IDH classification with
the DenseNet-161 model were 90.5� 1.0%, 79.9� 3.4%,
83.1� 3.2%, 94.8� 0.5%, 81.3� 3.2%, and 0.95, respectively.
The classification accuracy, precision, recall/sensitivity, speci-
ficity, F1 score, and AUC for slice-wise IDH classification
with the ResNet-50 model were 89.7� 1.1%, 79.3� 3.3%,
81.7� 3.2%, 94.1� 0.8%, 80.2� 3.1%, and 0.95 and for
the Inception-v4 model were 76.1� 3.7%, 59.4� 2.7%,
59.2� 2.6%, 84.5� 3.1%, 58.2� 2.1%, and 0.86, respectively.

Fig. 3 Architecture of the DenseNet-161 (161 layers) model used for IDH classification.

Journal of Medical Imaging 046003-4 Oct–Dec 2019 • Vol. 6(4)

Nalawade et al.: Classification of brain tumor isocitrate dehydrogenase status using MRI and deep learning

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 30 Jan 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



For subject-wise IDH classification, accuracy, precision/positive
predictive value, recall/sensitivity, specificity, F1 score, and
AUC with the DenseNet-161 model were 83.8� 2.9%, 84.1�
2.9%, 83.5� 3.5%, 83.5� 7.3%, 83.5� 3.1%, and 0.84,
respectively (Table 2). Subject-wise IDH classification, accu-
racy, precision/positive predictive value, recall/sensitivity, speci-
ficity, F1 score, and AUC with the ResNet-50 model were
81.4� 7.3%, 81.5� 7.2%, 81.5� 7.1%, 81.5� 7.1%, 81.4�
7.3%, and 0.81� 0.1% and for the Inception-v4 model were
64.2� 6.5%, 65.8� 8.2%, 65.1� 7.3%, 65.1� 3.5%, 64.0�
6.5%, and 0.65� 0.1%, respectively. Slice-wise and subject-
wise comparisons of accuracy, precision, recall/sensitivity,
specificity, F1 score, and AUC for each of the fivefold cross
validations for the DenseNet-161 model are shown in Table 3.
The DenseNet-161 model performed significantly better than
the Inception-v4 model for slice-wise classification (p ¼ 0.008)
and for subject-wise classification (p ¼ 0.008) using the rank
sum test. There was not a statistically significant difference
in performance between the DenseNet-161 and ResNet-50
models on either slice-wise performance (p ¼ 0.341) or subject-
wise performance (p ¼ 0.913). However, the DenseNet-161

model provided higher mean cross-validation accuracy and less
variability between the folds of the cross-validation procedure
than the ResNet-50 model for subject-wise classification.

3.3 Slice-Wise Comparison

The precision for the DenseNet-161 model across fivefold cross
validation was 97.7� 0.5% for the no tumor classification,
71.7� 6.8% for IDH mutation, and 70.3� 5.5% for IDH wild
type. The precision for the ResNet-50 model across fivefold

Table 1 Slice-wise accuracy comparisons between the ResNet-50
Model, Inception-v4, and DenseNet-161 model averaged for fivefold
cross validation.

Results averaged for fivefold cross validation

Model
Training

accuracy (%)
Validation

accuracy (%)
Testing

accuracy (%)

Inception-v4 64.8� 7.4 72.2� 6.9 1916/2522
(76.1� 3.7)

ResNet-50 97.9� 0.5 96.5� 0.6 2265/2522
(89.7� 1.1)

DenseNet-161 97.9� 0.4 96.4� 0.6 2282/2522
(90.5� 1.0)

Note: The results from the best performing model “DenseNet-161” are
highlighted in bold font.

Table 2 Slice-wise and subject-wise comparison of accuracy, precision, recall, F1 score, and AUC parameters averaged for fivefold cross val-
idation for ResNet-50, Inception-v4, and DenseNet-161.

Results averaged for fivefold cross validation

Parameters Accuracy (%) Precision (%) Recall/sensitivity (%) Specificity (%) F1 score (%) AUC

Slice-wise

Inception-v4 76.1� 3.7 59.4� 2.7 59.2� 2.6 84.5� 3.1 58.2� 2.1 0.86� 0.0

ResNet-50 89.7� 1.1 79.3� 3.3 81.7� 3.2 94.1� 0.8 80.2� 3.1 0.95� 0.0

DenseNet-161 90.5� 1.0 79.9� 3.4 83.1� 3.2 94.8� 0.5 81.3� 3.2 0.95� 0.0

Subject-wise

Inception-v4 64.2� 6.5 65.8� 8.2 65.1� 7.3 65.1� 3.5 64� 6.5 0.65� 0.1

ResNet-50 81.4� 7.3 81.5� 7.2 81.5� 7.1 81.5� 7.1 81.4� 7.3 0.81� 0.1

DenseNet-161 83.8� 2.9 84.1� 2.9 83.5� 3.5 83.5� 7.3 83.5� 3.1 0.84� 0.0

Note: The results from the best performing model “DenseNet-161” are highlighted in bold font.

Table 3 Slice-wise and subject-wise comparison of accuracy, preci-
sion, recall, F1 score, and AUC parameters for each of the fivefold
cross validations for the DenseNet-161 model.

DenseNet-161 model

Fold
Accuracy

(%)
Precision

(%)

Recall/
sensitivity

(%)
Specificity

(%)
F1 score

(%) AUC

Slice-wise

1 91.7 83.3 86.0 94.9 84.4 0.95

2 91.0 82.7 84.4 95.1 83.5 0.95

3 90.1 79.3 81.5 94.5 80.2 0.95

4 88.7 73.7 77.6 93.9 75.5 0.91

5 90.9 80.3 86.0 95.4 82.8 0.95

Subject-wise

1 84.6 84.8 84.0 84.0 84.2 0.84

2 86.5 87.2 87.5 87.5 86.5 0.87

3 78.8 79.1 77.9 77.9 78.2 0.78

4 82.7 83.1 81.8 81.8 82.2 0.82

5 86.5 86.3 86.6 86.6 86.4 0.87
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cross validation was 97.0� 1.1% for the no tumor class, 72.8�
3.9% for IDH mutation, and 68.0� 7.5% for IDH wild type,
and for the Inception-v4 model was 88.1� 6.3% for the no
tumor class, 53.9� 7.8% for IDH mutation, and 36.3� 7.0%
for IDH wild type.

3.4 Data Leakage

To demonstrate the effect of data leakage, we also performed
training, validation, and testing using the DenseNet-161 model
and T2w images with simple randomization of the slices without
separating by subject. Mean slice-wise accuracies of 96.7%
were achieved across the fivefold cross validation, which was
6.2% higher than when correctly separating slices by subject.

4 Discussion
The results from Tables 1 and 2 show that the ResNet-50 model
performed better than the Inception-v4 model. The ResNet-50
architecture has residual connections that preserve information
from the previous layer in the residual block. The DenseNet-161
model performed the best of all the three models tested. Unlike
the ResNet-50 model, the DenseNet-161 model architecture car-
ries the information from all previous layers and adds the infor-
mation to the next layer. This helped in learning the information
from different layers and transferring to the next layers. The slice-
wise classification AUC results were 0.95 for DenseNet-161, 0.95
for ResNet-50, and 0.86 for Inception-v4. The DenseNet-161
model performed significantly better than the Inception-v4 model
(p ¼ 0.008). Although there was not a statistically significant dif-
ference in performance between the DenseNet-161 and ResNet-
50 models (p ¼ 0.341), the DenseNet-161 model provided
higher mean cross-fold validation accuracy and less variability
between folds for subject-wise classifications.

Chang et al.14 demonstrated a high classification accuracy for
IDH mutation status using T2w, FLAIR, T1w pre- and postcon-
trast images. Preprocessing steps included co-registration across
multiple sequences, intensity normalization to zero mean and
unit variance, segmentation of the brain tumor, cropping the
images, and resizing slices to 32 × 32. A 94% mean accuracy
on fivefold cross validation was reported. The approach to clas-
sification was slice-wise, similar to our model. In designing the
slice-wise classification model, it is important to ensure that
none of the slices of subjects from the testing set are inadvert-
ently included in the training set. This can easily be overlooked
in 2-D slice-wise models during the slice randomization process
that generate the training slices, validation slices, and testing
slices. This can introduce bias in the testing phase, artificially
boosting accuracies by including slices from subjects in the
training set that share considerable information with different
slices but from the same subjects in the testing set. It is not clear
in the previously reported 2-D models whether this caveat was
adhered to.

An important methodological contribution that we make
specifically to the radiologic deep learning literature is on the
approach to data randomization for 2-D models. It is critical that
imaging researchers are aware of the data leakage and subject
duplication issue. This is perhaps unique to radiology where
multiple slices of pathology are acquired in MRI or computed
tomography, with considerable overlap in feature content from
slice to slice. Widely used deep learning tools provide the ability
to perform data randomization using a simple flag in the so-
called routine (e.g., in Keras or Scikit-learn29). Use of this flag
in 2-D imaging-based CNNs can lead to bias in the results by

inadvertently including slices from the same subject in both
training and testing cohorts. This is a significant concern, as
it can lead to data leakage in which examples of the same subject
(albeit different slices of the same tumor) can appear in the train-
ing set and the test set. The problem of data leakage in medical
images was discussed by Wegmayr et. al.30 and Feng et al.20 and
has been referred to as subject duplication in training and testing
sets. When not accounting for data leakage, we were able to
achieve slice-wise accuracies of 96.7% with the T2 images
alone, slightly higher than that of Chang et al.14. When appro-
priately accounting for the data leakage issue, our slice-wise
accuracies were reduced to 90.5% as reported here. One of the
contributions of our work is in making the radiology community
aware of the data leakage problem, as it is very easy to overlook
when 2-D networks that use image slices as input are consid-
ered. We also demonstrate that T2w images can provide signifi-
cant information for IDH image-based classification.

The majority of HGG tumors are IDH wild type (up to 90%).
An algorithm that merely distinguishes between HGG and LGG
for determination of IDH status is likely of limited value as this
can be done subjectively with fairly high accuracy on the basis
of contrast enhancement. For example, previous studies that
used multiparametric MR data for determination of IDH status
in HGG and LGG may have demonstrated high accuracy pre-
dominantly on the basis of contrast-enhancement features. The
more valuable distinction from a clinical standpoint would be
between IDH mutated and IDH wild type LGGs, in which con-
trast enhancement is usually absent. Our training and testing
samples were weighted toward LGG, and there was a significant
number of IDH wild type LGGs in both the training and vali-
dation samples (∼30%). Our testing accuracy for the LGG group
was 78.6%. Additionally, our use of T2w-only images elimi-
nates the potential for the algorithm being a contrast-enhance-
ment discriminator.

Our method provides high accuracy with minimal prepro-
cessing steps as compared to previous work. The preprocessing
steps in our work only involve N4 bias field correction and
intensity normalization. Our method also involves no tumor seg-
mentation or ROI extraction as described by Chang et al.,12

which helps in reducing the time, effort, and potential sources
of error. Our method also does not require pre-engineered
features to be extracted from the images or histopathological
data as described by Delfanti et al.11. This general approach can
be easily incorporated into an automated clinical workflow for
IDH classification. The minimal preprocessing and the use of
standard T2w images alone make it promising as a robust clini-
cal tool for noninvasively determining IDH mutation status.

5 Limitations
This is a retrospective study applying several neural network
architectures to the TCIA HGG-LGG database to generate a
model predicting IDH genotype based only on T2w MR imag-
ing. The dataset, especially at the subject level, is small in terms
of deep learning applications and may not generalize well.
Fluctuation of performance is also a concern with small datasets.
However, the TCIA dataset is the largest curated brain tumor
dataset publicly available, and it uses data from multiple sites
using different imaging protocols. This database consisted of
data from 10 different institutions, out of which 8 institutions
contributed GBM/HGG datasets and 5 institutions contributed
LGG datasets to the TCIA cohort. This provided a very hetero-
geneous dataset, and we believe this is perhaps even better than
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using data from a single source for deep learning applications.
While our current study focused on the classification of T2w
images into no tumor, IDH mutated, and IDH wild type, future
studies can extend this approach to classify IDH1 and IDH2
subtypes. Accuracies may be further improved with the inclu-
sion of multiparametric imaging data in the training model. Our
approach, however, is much more straightforward using T2w
images alone without the requirement of additional imaging
sequences. Clinically, T2w images are typically acquired within
2 min and are robust to patient motion. The multisequence input
required by previous approaches can be compromised due to
patient motion from lengthier examination times and the need
for gadolinium contrast, especially as the postcontrast images
are typically acquired at the end of an already lengthy exami-
nation time. For a potential clinical solution, the use of T2w
images is a significant strength, as these images are almost
uniformly acquired without artifacts from patient motion.

6 Conclusion
We demonstrate a deep learning method to predict IDH muta-
tion status using T2w MR images alone. The proposed model

requires minimal preprocessing to obtain high accuracies with-
out the need for tumor segmentation or extraction of ROI,
making it promising for robust clinical implementation.

7 Appendix
Additional information on the models used is included here.
Figure 4 provides an example of the three classes used in the
models (IDH mutated tumor, IDH wild type tumor, and the no
tumor class). Figure 5 provides an example of the Inception-v4
model architecture. Figure 6 provides receiver operating charac-
teristic (ROC) curves for subject-wise classification of the three
models. The DenseNet-161 model provided the highest mean
AUC across the fivefold validation (0.84). Table 4 compares the
accuracy, precision, and sensitivity for slice-wise classification
using the DenseNet-161 model with and without data leakage.
When not accounting for data leakage (e.g., random assignment
of slices to training, validation, and testing), accuracy was ∼6%
higher than when the data leakage was appropriately handled
(separating slices by subject). Table 5 provides the class weights
used for each fold in the IDH classification. Table 6 provides
a list of the 260 subjects used from the TCIA database.

Fig. 4 Examples of the three classes used for IDH classification: (a) IDHmutated tumor, (b) IDHwild type
tumor, and (c) no tumor.
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Fig. 5 Inception-v4 model architecture. This model uses (b) three different inception blocks, (c) two
different reduction blocks, and (d) one stem block with convolution layers at different resolutions (color
legend on the lower right). (a) The final prediction layer is modified to provide three class outputs.

Fig. 6 Subject-wise classification ROC curves for the three models. (a) DenseNet-161, (b) ResNet-50,
and (c) Inception-v4. DenseNet-161 provided the highest mean AUC across the fivefold cross validation
(0.84� 0.0) compared to ResNet-50 (0.81� 0.1) and Inception-v4 (0.65� 0.1).

Table 4 DenseNet-161 model performance with no data leakage compared to with data leakage.

Fold

DenseNet-161 model with and without data leakage

No data leakage Data leakage

Accuracy (%) Precision (%) Recall/sensitivity (%) Accuracy (%) Precision (%) Recall/sensitivity (%)

Slice-wise

1 91.7 83.3 86.0 95.6 91.3 94.31
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Table 4 (Continued).

Fold

DenseNet-161 model with and without data leakage

No data leakage Data leakage

Accuracy (%) Precision (%) Recall/sensitivity (%) Accuracy (%) Precision (%) Recall/sensitivity (%)

2 91.0 82.7 84.4 96.7 93.6 94.9

3 90.1 79.3 81.5 96.1 91.6 94.40

4 88.7 73.7 77.6 97.2 94.5 95.13

5 90.9 80.3 86.0 97.9 94.9 96.70

Average 90.5� 1.0 79.9� 3.4 83.1� 3.2 96.7� 0.8 93.2� 1.5 95.1� 0.9

Table 5 Class weights used for each fold in IDH classification.

Fold

Class weights

No tumor IDH mutated IDH wild type

1 0.32 0.36 0.32

2 0.32 0.36 0.32

3 0.33 0.34 0.33

4 0.33 0.35 0.32

5 0.32 0.35 0.33

Table 6 List of TCIA subjects used for IDH classification.

Subject no. Subject ID IDH status

1 TCGA-HT-7684 IDH mutated

2 TCGA-HT-7468 IDH mutated

3 TCGA-HT-8563 IDH mutated

4 TCGA-DU-5871 IDH mutated

5 TCGA-HT-7471 IDH mutated

6 TCGA-HT-A5RB IDH mutated

7 TCGA-HT-8105 IDH mutated

8 TCGA-DU-7015 IDH mutated

9 TCGA-HT-A616 IDH mutated

10 TCGA-HT-7604 IDH mutated

11 TCGA-HT-7473 IDH mutated

12 TCGA-DU-A6S7 IDH mutated

13 TCGA-DU-6397 IDH mutated

14 TCGA-DU-A5TP IDH mutated

15 TCGA-CS-6667 IDH mutated

Table 6 (Continued).

Subject no. Subject ID IDH status

16 TCGA-HT-8111 IDH mutated

17 TCGA-HT-7481 IDH mutated

18 TCGA-HT-7879 IDH mutated

19 TCGA-HT-A615 IDH mutated

20 TCGA-CS-4942 IDH mutated

21 TCGA-HT-7605 IDH mutated

22 TCGA-DU-7010 IDH mutated

23 TCGA-HT-A61A IDH mutated

24 TCGA-27-1830 IDH wild type

25 TCGA-08-0353 IDH wild type

26 TCGA-CS-4941 IDH wild type

27 TCGA-02-0068 IDH wild type

28 TCGA-FG-6692 IDH wild type

29 TCGA-76-4926 IDH wild type

30 TCGA-02-0009 IDH wild type

31 TCGA-CS-6186 IDH wild type

32 TCGA-27-1838 IDH wild type

33 TCGA-12-1602 IDH wild type

34 TCGA-76-6662 IDH wild type

35 TCGA-02-0048 IDH wild type

36 TCGA-06-0138 IDH wild type

37 TCGA-08-0351 IDH wild type

38 TCGA-06-0216 IDH wild type

39 TCGA-14-0789 IDH wild type

40 TCGA-76-6280 IDH wild type
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Table 6 (Continued).

Subject no. Subject ID IDH status

41 TCGA-08-0352 IDH wild type

42 TCGA-19-5953 IDH wild type

43 TCGA-19-1390 IDH wild type

44 TCGA-19-2631 IDH wild type

45 TCGA-02-0047 IDH wild type

46 TCGA-08-0360 IDH wild type

47 TCGA-06-0157 IDH wild type

48 TCGA-DU-A5TY IDH wild type

49 TCGA-06-5412 IDH wild type

50 TCGA-06-0160 IDH wild type

51 TCGA-CS-6669 IDH wild type

52 TCGA-12-3650 IDH wild type

53 TCGA-HT-7692 IDH mutated

54 TCGA-DU-7008 IDH mutated

55 TCGA-DU-A6S3 IDH mutated

56 TCGA-HT-7686 IDH mutated

57 TCGA-DU-5872 IDH mutated

58 TCGA-FG-6691 IDH mutated

59 TCGA-CS-5396 IDH mutated

60 TCGA-HT-7877 IDH mutated

61 TCGA-HT-7603 IDH mutated

62 TCGA-FG-A87N IDH mutated

63 TCGA-HT-8106 IDH mutated

64 TCGA-HT-7475 IDH mutated

65 TCGA-DU-7300 IDH mutated

66 TCGA-DU-6401 IDH mutated

67 TCGA-HT-7478 IDH mutated

68 TCGA-CS-6666 IDH mutated

69 TCGA-HT-7694 IDH mutated

70 TCGA-FG-7637 IDH mutated

71 TCGA-HT-7690 IDH mutated

72 TCGA-DU-5853 IDH mutated

73 TCGA-DU-A6S8 IDH mutated

74 TCGA-FG-6689 IDH mutated

75 TCGA-CS-5394 IDH mutated

76 TCGA-06-0645 IDH wild type

77 TCGA-06-5413 IDH wild type

Table 6 (Continued).

Subject no. Subject ID IDH status

78 TCGA-76-6657 IDH wild type

79 TCGA-FG-6688 IDH wild type

80 TCGA-02-0037 IDH wild type

81 TCGA-06-0881 IDH wild type

82 TCGA-76-6286 IDH wild type

83 TCGA-08-0359 IDH wild type

84 TCGA-06-0184 IDH wild type

85 TCGA-06-0646 IDH wild type

86 TCGA-FG-A4MU IDH wild type

87 TCGA-19-2620 IDH wild type

88 TCGA-76-6282 IDH wild type

89 TCGA-CS-6188 IDH wild type

90 TCGA-06-0210 IDH wild type

91 TCGA-27-1836 IDH wild type

92 TCGA-19-5954 IDH wild type

93 TCGA-19-1791 IDH wild type

94 TCGA-08-0389 IDH wild type

95 TCGA-19-2624 IDH wild type

96 TCGA-06-0648 IDH wild type

97 TCGA-02-0011 IDH wild type

98 TCGA-06-0137 IDH wild type

99 TCGA-06-0644 IDH wild type

100 TCGA-12-1598 IDH wild type

101 TCGA-06-0143 IDH wild type

102 TCGA-HT-7680 IDH wild type

103 TCGA-06-0173 IDH wild type

104 TCGA-76-4929 IDH wild type

105 TCGA-DU-8168 IDH mutated

106 TCGA-DU-7019 IDH mutated

107 TCGA-DU-A5TW IDH mutated

108 TCGA-HT-7606 IDH mutated

109 TCGA-HT-7608 IDH mutated

110 TCGA-HT-7880 IDH mutated

111 TCGA-FG-6690 IDH mutated

112 TCGA-FG-A6IZ IDH mutated

113 TCGA-DU-6395 IDH mutated

114 TCGA-DU-5851 IDH mutated
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Table 6 (Continued).

Subject no. Subject ID IDH status

115 TCGA-HT-7693 IDH mutated

116 TCGA-DU-6399 IDH mutated

117 TCGA-DU-8164 IDH mutated

118 TCGA-DU-7309 IDH mutated

119 TCGA-HT-8010 IDH mutated

120 TCGA-HT-7616 IDH mutated

121 TCGA-HT-7855 IDH mutated

122 TCGA-DU-A5TU IDH mutated

123 TCGA-FG-5964 IDH mutated

124 TCGA-DU-7298 IDH mutated

125 TCGA-HT-A61B IDH mutated

126 TCGA-HT-7902 IDH mutated

127 TCGA-DU-8163 IDH mutated

128 TCGA-HT-8107 IDH wild type

129 TCGA-02-0102 IDH wild type

130 TCGA-HT-7860 IDH wild type

131 TCGA-HT-7882 IDH wild type

132 TCGA-06-0158 IDH wild type

133 TCGA-19-1388 IDH wild type

134 TCGA-08-0357 IDH wild type

135 TCGA-06-0142 IDH wild type

136 TCGA-02-0006 IDH wild type

137 TCGA-HT-7469 IDH wild type

138 TCGA-76-4925 IDH wild type

139 TCGA-DU-8165 IDH wild type

140 TCGA-06-0165 IDH wild type

141 TCGA-DU-5854 IDH wild type

142 TCGA-76-4935 IDH wild type

143 TCGA-14-1794 IDH wild type

144 TCGA-06-0185 IDH wild type

145 TCGA-02-0069 IDH wild type

146 TCGA-02-0070 IDH wild type

147 TCGA-76-6663 IDH wild type

148 TCGA-19-5960 IDH wild type

149 TCGA-06-0176 IDH wild type

150 TCGA-76-4928 IDH wild type

151 TCGA-HT-8564 IDH wild type

Table 6 (Continued).

Subject no. Subject ID IDH status

152 TCGA-08-0349 IDH wild type

153 TCGA-06-0174 IDH wild type

154 TCGA-12-0829 IDH wild type

155 TCGA-06-0241 IDH wild type

156 TCGA-HT-A4DS IDH wild type

157 TCGA-DU-7294 IDH mutated

158 TCGA-HT-8013 IDH mutated

159 TCGA-HT-7677 IDH mutated

160 TCGA-DU-7299 IDH mutated

161 TCGA-DU-7306 IDH mutated

162 TCGA-DU-7301 IDH mutated

163 TCGA-HT-7695 IDH mutated

164 TCGA-06-0128 IDH mutated

165 TCGA-HT-7472 IDH mutated

166 TCGA-HT-8113 IDH mutated

167 TCGA-DU-5849 IDH mutated

168 TCGA-DU-A5TR IDH mutated

169 TCGA-FG-A4MT IDH mutated

170 TCGA-HT-8108 IDH mutated

171 TCGA-CS-4943 IDH mutated

172 TCGA-HT-7602 IDH mutated

173 TCGA-DU-6407 IDH mutated

174 TCGA-DU-8166 IDH mutated

175 TCGA-DU-7018 IDH mutated

176 TCGA-FG-8186 IDH mutated

177 TCGA-DU-7304 IDH mutated

178 TCGA-HT-8018 IDH mutated

179 TCGA-DU-A6S2 IDH mutated

180 TCGA-DU-7013 IDH wild type

181 TCGA-08-0244 IDH wild type

182 TCGA-HT-7854 IDH wild type

183 TCGA-HT-8110 IDH wild type

184 TCGA-CS-5397 IDH wild type

185 TCGA-02-0075 IDH wild type

186 TCGA-08-0348 IDH wild type

187 TCGA-02-0060 IDH wild type

188 TCGA-HT-A5RC IDH wild type
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Table 6 (Continued).

Subject no. Subject ID IDH status

189 TCGA-02-0003 IDH wild type

190 TCGA-76-4927 IDH wild type

191 TCGA-06-0168 IDH wild type

192 TCGA-06-0189 IDH wild type

193 TCGA-08-0354 IDH wild type

194 TCGA-HT-A617 IDH wild type

195 TCGA-19-1789 IDH wild type

196 TCGA-12-1601 IDH wild type

197 TCGA-76-4934 IDH wild type

198 TCGA-06-0166 IDH wild type

199 TCGA-02-0085 IDH wild type

200 TCGA-06-0139 IDH wild type

201 TCGA-76-6656 IDH wild type

202 TCGA-12-1093 IDH wild type

203 TCGA-08-0356 IDH wild type

204 TCGA-76-6664 IDH wild type

205 TCGA-08-0355 IDH wild type

206 TCGA-08-0350 IDH wild type

207 TCGA-06-0145 IDH wild type

208 TCGA-02-0054 IDH wild type

209 TCGA-FG-A713 IDH mutated

210 TCGA-DU-5855 IDH mutated

211 TCGA-CS-6668 IDH mutated

212 TCGA-HT-7884 IDH mutated

213 TCGA-FG-8189 IDH mutated

214 TCGA-FG-7634 IDH mutated

215 TCGA-HT-7856 IDH mutated

216 TCGA-CS-6665 IDH mutated

217 TCGA-HT-A5R5 IDH mutated

218 TCGA-FG-A6J1 IDH mutated

219 TCGA-DU-8167 IDH mutated

220 TCGA-DU-7302 IDH mutated

221 TCGA-06-2570 IDH mutated

222 TCGA-06-5417 IDH mutated

223 TCGA-DU-5874 IDH mutated

224 TCGA-HT-7476 IDH mutated

Table 6 (Continued).

Subject no. Subject ID IDH status

225 TCGA-DU-A6S6 IDH mutated

226 TCGA-14-1456 IDH mutated

227 TCGA-DU-6408 IDH mutated

228 TCGA-06-6389 IDH mutated

229 TCGA-HT-7874 IDH mutated

230 TCGA-HT-8114 IDH mutated

231 TCGA-CS-5390 IDH mutated

232 TCGA-06-0133 IDH wild type

233 TCGA-02-0046 IDH wild type

234 TCGA-08-0380 IDH wild type

235 TCGA-06-0154 IDH wild type

236 TCGA-12-0616 IDH wild type

237 TCGA-DU-A5TT IDH wild type

238 TCGA-08-0390 IDH wild type

239 TCGA-HT-8558 IDH wild type

240 TCGA-08-0246 IDH wild type

241 TCGA-FG-5963 IDH wild type

242 TCGA-76-6285 IDH wild type

243 TCGA-08-0392 IDH wild type

244 TCGA-08-0385 IDH wild type

245 TCGA-DU-6404 IDH wild type

246 TCGA-02-0034 IDH wild type

247 TCGA-FG-7643 IDH wild type

248 TCGA-06-0649 IDH wild type

249 TCGA-14-1829 IDH wild type

250 TCGA-27-1835 IDH wild type

251 TCGA-02-0033 IDH wild type

252 TCGA-14-3477 IDH wild type

253 TCGA-06-0213 IDH wild type

254 TCGA-DU-5852 IDH wild type

255 TCGA-06-0192 IDH wild type

256 TCGA-19-5958 IDH wild type

257 TCGA-06-0238 IDH wild type

258 TCGA-02-0064 IDH wild type

259 TCGA-06-0122 IDH wild type

260 TCGA-HT-8019 IDH wild type

Journal of Medical Imaging 046003-12 Oct–Dec 2019 • Vol. 6(4)

Nalawade et al.: Classification of brain tumor isocitrate dehydrogenase status using MRI and deep learning

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 30 Jan 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Disclosures
No conflicts of interest.

Acknowledgments
This research was supported by the U.S. National Cancer
Institute under Grant No. U01CA207091 (A.J.M. and
J.A.M.). We would like to thank statistician Dr. Yin Xi for help
with the ROC and AUC analyses.

References
1. D. W. Parsons et al., “An integrated genomic analysis of human glio-

blastoma multiforme,” Science 321(5897), 1807–1812 (2008).
2. H. Yan et al., “IDH1 and IDH2 mutations in gliomas,” N. Engl. J. Med.

360(8), 765–773 (2009).
3. D. N. Louis et al., “The 2016 World Health Organization classification

of tumors of the central nervous system: a summary,” Acta Neuropathol.
131(6), 803–820 (2016).

4. W. B. Pope et al., “Non-invasive detection of 2-hydroxyglutarate and
other metabolites in IDH1 mutant glioma patients using magnetic res-
onance spectroscopy,” J. Neuro-Oncol. 107(1), 197–205 (2012).

5. C. Choi et al., “2-hydroxyglutarate detection by magnetic resonance
spectroscopy in IDH-mutated patients with gliomas,” Nat. Med. 18(4),
624–629 (2012).

6. M. I. de la Fuente et al., “Integration of 2-hydroxyglutarate-proton mag-
netic resonance spectroscopy into clinical practice for disease monitor-
ing in isocitrate dehydrogenase-mutant glioma,” Neuro-Oncology 18(2),
283–290 (2015).

7. A. Tietze et al., “Noninvasive assessment of isocitrate dehydrogenase
mutation status in cerebral gliomas by magnetic resonance spectroscopy
in a clinical setting,” J. Neurosurg. 128(2), 391–398 (2017).

8. C. Choi et al., “Prospective longitudinal analysis of 2-hydroxyglutarate
magnetic resonance spectroscopy identifies broad clinical utility for
the management of patients with IDH-mutant glioma,” J. Clin. Oncol.
34(33), 4030–4039 (2016).

9. C. Choi et al., “A comparative study of short- and long-TE 1H MRS at
3 T for in vivo detection of 2-hydroxyglutarate in brain tumors,” NMR
Biomed. 26(10), 1242–1250 (2013).

10. S. K. Ganji et al., “In vivo detection of 2-hydroxyglutarate in brain
tumors by optimized point-resolved spectroscopy (PRESS) at 7T,”
Magn. Reson. Med. 77(3), 936–944 (2017).

11. R. L. Delfanti et al., “Imaging correlates for the 2016 update on WHO
classification of grade II/III gliomas: implications for IDH, 1p/19q and
ATRX status,” J. Neuro-Oncol. 135(3), 601–609 (2017).

12. K. Chang et al., “Residual convolutional neural network for the deter-
mination of IDH status in low- and high-grade gliomas from MR im-
aging,” Clin. Cancer Res. 24(5), 1073–1081 (2018).

13. X. Zhang et al., “Radiomics strategy for molecular subtype stratification
of lower-grade glioma: detecting IDH and TP53 mutations based on
multimodal MRI,” J. Magn. Reson. Imaging 48(4), 916–926 (2018).

14. P. Chang et al., “Deep-learning convolutional neural networks accu-
rately classify genetic mutations in gliomas,” Am. J. Neuroradiol. 39(7),
1201–1207 (2018).

15. Z. Akkus et al., “Predicting deletion of chromosomal arms 1p/19q
in low-grade gliomas from MR images using machine intelligence,”
J Digital Imaging 30(4), 469–476 (2017).

16. K. Clark et al., “The Cancer Imaging Archive (TCIA): maintaining and
operating a public information repository,” J. Digital Imaging 26(6),
1045–1057 (2013).

17. L. Scarpace et al., “Radiology data from the cancer genome atlas glio-
blastoma multiforme [TCGA-GBM] collection,” Cancer Imaging Arch.
11, 4 (2016).

18. N. Pedano, A. Flanders, and L. Scarpace, “Radiology data from the
Cancer Genome Atlas Low Grade Glioma [TCGA-LGG] collection,” The
Cancer Imaging Archive, 2016, https://wiki.cancerimagingarchive.net/
display/Public/TCGA-LGG#64c2b0756f974ab5b574ca3888851202.

19. M. Ceccarelli et al., “Molecular profiling reveals biologically discrete
subsets and pathways of progression in diffuse glioma,” Cell 164(3),
550–563 (2016).

20. X. Feng et al., “Deep learning on MRI affirms the prominence of the
hippocampal formation in Alzheimer’s disease classification,” bioRxiv
(2018).

21. D. A. Bluemke, “Editor’s note: publication of AI research in radiology,”
Radiology 289(3), 579–580 (2018).

22. X. Li et al., “The first step for neuroimaging data analysis: DICOM to
NIfTI conversion,” J. Neurosci. Methods 264, 47–56 (2016).

23. C. Szegedy, “Inception-v4, inception-resnet and the impact of residual
connections on learning,” in AAAI, Vol. 4 (2017).

24. C. Szegedy, “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vision and Pattern Recognit. (2015).

25. G. Huang et al., “Densely connected convolutional networks,” in
Comput. Vision and Pattern Recognit. (CVPR) (2017).

26. K. He et al., “Deep residual learning for image recognition,” in Proc.
IEEE Conf. Comput. Vision and Pattern Recognit. (2016).

27. H. Robbins and S. Monro, “A stochastic approximation method,” Ann.
Math. Stat. 22, 400–407 (1951).

28. T. Zhang, “Solving large scale linear prediction problems using stochas-
tic gradient descent algorithms,” in Proc. Twenty-First Int. Conf. Mach.
Learn., ACM (2004).

29. F. Pedregosa et al., “Scikit-learn: machine learning in Python,” J. Mach.
Learn. Res. 12, 2825–2830 (2011).

30. V. Wegmayr, S. Aitharaju, and J. Buhmann, “Classification of brain
MRI with big data and deep 3D convolutional neural networks,”
Proc. SPIE 10575, 105751S.

Sahil Nalawade is a research associate at the University of Texas,
Southwestern Medical Center. He received his MS degree in biomedi-
cal engineering from the University of Texas, Arlington, in May 2017.

Gowtham K. Murugesan is currently pursuing his PhD in biomedical
engineering at the University of Texas, Southwestern Medical Center,
Arlington. He received his MS degree in biomedical engineering from
the University of Texas, Arlington, in May 2016.

Joseph A. Maldjian is a professor of radiology at UT Southwestern
Medical Center, the chief of neuroradiology, and holds the Lee R. and
Charlene B. Raymond Distinguished Chair in Brain Research. An
expert in advanced neuroimaging clinical and research applications,
he has authoredmore than 150 peer-reviewed papers and has served
on a number of review panels.

Biographies of the other authors are not available.

Journal of Medical Imaging 046003-13 Oct–Dec 2019 • Vol. 6(4)

Nalawade et al.: Classification of brain tumor isocitrate dehydrogenase status using MRI and deep learning

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 30 Jan 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1126/science.1164382
https://doi.org/10.1056/NEJMoa0808710
https://doi.org/10.1007/s00401-016-1545-1
https://doi.org/10.1007/s11060-011-0737-8
https://doi.org/10.1038/nm.2682
https://doi.org/10.1093/neuonc/nov307
https://doi.org/10.3171/2016.10.JNS161793
https://doi.org/10.1200/JCO.2016.67.1222
https://doi.org/10.1002/nbm.2943
https://doi.org/10.1002/nbm.2943
https://doi.org/10.1002/mrm.26190
https://doi.org/10.1007/s11060-017-2613-7
https://doi.org/10.1158/1078-0432.CCR-17-2236
https://doi.org/10.1002/jmri.25960
https://doi.org/10.3174/ajnr.A5667
https://doi.org/10.1007/s10278-017-9984-3
https://doi.org/10.1007/s10278-013-9622-7
https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG#64c2b0756f974ab5b574ca3888851202
https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG#64c2b0756f974ab5b574ca3888851202
https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG#64c2b0756f974ab5b574ca3888851202
https://wiki.cancerimagingarchive.net/display/Public/TCGA-LGG#64c2b0756f974ab5b574ca3888851202
https://doi.org/10.1016/j.cell.2015.12.028
https://doi.org/10.1101/456277
https://doi.org/10.1148/radiol.2018184021
https://doi.org/10.1016/j.jneumeth.2016.03.001
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1145/1015330.1015332
https://doi.org/10.1145/1015330.1015332
https://doi.org/10.1117/12.2293719

