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ABSTRACT   

As an emerging technology, hyperspectral imaging (HSI) combines both the chemical specificity of spectroscopy and the 

spatial resolution of imaging, which may provide a non-invasive tool for cancer detection and diagnosis. Early detection 

of malignant lesions could improve both survival and quality of life of cancer patients. In this paper, we introduce a 

tensor-based computation and modeling framework for the analysis of hyperspectral images to detect head and neck 

cancer. The proposed classification method can distinguish between malignant tissue and healthy tissue with an average 

sensitivity of 96.97% and an average specificity of 91.42% in tumor-bearing mice. The hyperspectral imaging and 

classification technology has been demonstrated in animal models and can have many potential applications in cancer 

research and management.   

Keywords: Hyperspectral imaging, Head and neck cancer, Tensor modeling, Tucker tensor decomposition, Dimension 

reduction, Feature ranking 

1. INTRODUCTION 

Head and neck cancer refers to malignancy starts in the nasal cavity, oral cavity, pharynx, larynx, paranasal sinuses, 

nasal cavity, and salivary glands. Over 90% of head and neck cancers are squamous cell carcinoma of the mucosal 

surfaces at the head and neck region [1]. More than a million patients are diagnosed each year with squamous cell 

carcinoma of the head and neck (HNSCC) worldwide [2]. Survival and life quality of the patients correlate directly to the 

size of the primary tumor at first diagnosis, therefore, early detection of malignant lesions could improve both the 

incidence and the survival [3].  

Traditionally, a conventional oral examination using incandescent light is the standard method for oral abnormality 

[4] [5] and cancer screening, but it does not identify all potentially premalignant lesions, nor accurately detect the small 

proportion of biologically relevant lesions that are likely to progress to cancer [6]. Visual examination followed by 

biopsy of suspicious tissue sites is usually performed to make definitive diagnosis [7]. However, this process is 

subjective and limited by the experiences and skills of the clinicians. Furthermore, it could be challenging to delineate 

the margin of the lesion, which makes the choice of biopsy sites difficult [8]. Optical Imaging has the potential to solve 

these clinical challenges. 

It has been reported that optical spectroscopy could detect malignant lesions before they become macroscopically 

visible, by correlating early biochemical and histological changes in oral tissue with spectral features in fluorescence, 

reflectance, and light scattering spectra [7]. However, spectroscopy is only a point measurement method, which is 

generally used to obtain an entire spectrum of a single tissue site within a wavelength of interest. It needs to scan the area 

over time in order to acquire a spatial distribution about the chemical composition of tissues.  
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Recently, hyperspectral imaging has exhibited great potential in the diagnosis of cancer such as cancers in the 

cervix, breast, colon, gastrointestine, skin, ovarian, urothelial carcinoma, prostate, esophageal, trachea, oral tissue, 

tongue, and brain [9]. HSI acquires images over continuous spectral bands across a wide range of electromagnetic 

spectra, which combines both the chemical specificity of spectroscopy and the spatial resolution of imaging [10]. 

Compared to optical spectroscopy, HSI is able to capture images of a large area of tissue noninvasively, without the 

administration of contrast agents.  

HSI has been reported to detect head and neck cancer by several researchers.  In our group, we imaged pathological 

slides using a hyperspectral camera and reported the detection of HNC metastasis ex vivo with promising sensitivity and 

specificity [11]. Liu et al. [12] measured and analyzed the reflectance spectra of human tongue based on the sparse 

representation of spectral information of each pixels. However, these classification methods only utilized the spectral 

information of individual pixels without considering the spatial relationship of neighboring pixels. Roblyer et al. [13] [14] 

reported the use of a multispectral digital microscope (DMD) for the detection of oral neoplasia in a pilot clinical trial. 

The proposed DMD was a multimodal imaging method which combined the fluorescence, narrow-band (NB) reflectance, 

and orthogonal polarized reflectance (OPR) modes. They observed decreased blue/green autofluorescence and increased 

red autofluorescence in the lesions and increased visibility of vasculature with NB and OPR imaging. However, their 

method was limited to a few spectral bands within the ultraviolet (UV) and visible (VIS) light regions. In our research, 

we explored the spectral difference of normal and cancerous tissue spectra ranging from the visible to near infrared 

region, which has higher penetration depth and could potentially provide more valuable information for cancer diagnosis.  

HSI generates large amount of high dimensional data, therefore automatic processing methods are indispensable for 

the interpretation of hyperspectral data. However, classification of hyperspectral images is challenging due to the high 

spatial resolution, high dimensionality of spectral bands, and high redundancy caused by high correlation in adjacent 

bands [9]. Traditional classification methods suffer from two aspects: (1) Pixel-based methods treat each pixel 

independently without considering the spatial relationship of neighboring pixels, and the classification methods based on 

high dimension of the spectral features are time-consuming. (2) Dimension reduction methods, such as principal 

component analysis (PCA) [15], independent component analysis (ICA), maximum noise fraction (MNF), sparse matrix 

transform [16] [17], etc. require spatial rearrangement by vectorizing all images into two-way data. In order to utilize 

both spectral and spatial information, and to perform dimension reduction without changing the three dimensional 

structure of hyperspectral data, we introduce a new spectral-spatial classification scheme, which involves spectral-spatial 

representation and dimension reduction based on tensor modeling for head and neck cancer detection. To our best 

knowledge, this study represents the first application of tensor-based methods in cancer detection with hyperspectral 

imaging. 

2. METHODS 

2.1 Hyperspectral Imaging System 

Reflectance images were acquired by a CRI Maestro in-vivo imaging system, which mainly consists of an internal 

optics, a flexible fiber-optic lighting system, a 16-bit high-resolution charge-coupled device (CCD), a solid-state liquid 

crystal filter (LCTF), and a spectrally optimized lens. The system is a light-tight apparatus that uses a Cermax-type, 300-

Watt, Xenon light source, which spans the electromagnetic spectrum from 500 nm to 950 nm. The active light sensitive 

area of the CCD is 1,392 pixels in the horizontal direction and 1,040 pixels in the vertical direction. For image 

acquisition, the wavelength setting can be defined within the range of 450-950 nm with 2 nm increments; therefore the 

data cube collected was a three-dimensional array of the size 1,040 × 1,392 × n. n is determined by the wavelength range 

and increments as chosen by the user. The field of view (FOV) is from 3.4 × 2.5 cm to 10.2 ×7.6 cm with variable zoom. 

2.2 Hyperspectral Imaging Experiment in Animals  

We used tumor-bearing mice for the HSI experiments. A head and neck tumor xenograft model using HNSCC cell line 

M4E was adopted in the experiment. The HNSCC cells (M4E) were maintained as a monolayer culture in Dulbecco’s 

modified Eagle’s medium (DMEM)/F12 medium (1:1) supplemented with 10% fetal bovine serum (FBS) [18]. M4E-

GFP cells which are generated by transfection of pLVTHM vector into M4E cells were maintained in the same condition 

as M4E cells. Animal experiments were approved by the Animal Care and Use Committee of Emory University. Four 
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female mice aged 4-6 weeks were injected with 2 x 106 M4E cells with green fluorescence protein (GFP) on the lower 

back.  

HSI scans were performed approximately three weeks post tumor cell injection. For each mouse, we acquired two 

HSI cubes at two different time points. During the image acquisition, each mouse was anesthetized with a continuous 

supply of 2% isoflurane in oxygen. First, both the interior infrared and the white excitation were opened for reflectance 

image acquisition with 50 ms exposure time. Reflectance images contain 251 spectral bands from 450 to 950 nm with 2 

nm increments. Then, blue excitation and 50 ms exposure time were selected for the fluorescence image acquisition. 

Tumors show green signals in fluorescence images due to tumor cells with GFP. Since tumors grow mostly on one side 

of the body, a mirror was used to aid in capturing the entire tumor while imaging. In this study, we used GFP 

fluorescence images as the gold standard for the evaluation of cancer detection by HSI.  

2.3 Data Preprocessing 

Data preprocessing consists of three steps. First, in order to remove the influence of the dark current, raw image cubes 

and white reference image cubes were corrected by subtracting a dark image cube from each acquired image cubes. To 

get the white and dark reference image cubes, a standard white reference board was placed in the field of view, and the 

dark currents were measured by keeping the camera shutter closed. Second, in order to produce the spectra such that a 

higher absorbance of light gives a positive peak, the data cubes were converted to optical density by taking the negative 

decimal logarithm of the ratio between the images of the tissue and the images of the white reference at each pixel in the 

cube [19]. Moreover, after the conversion to optical density, data can be analyzed using standard spectroscopic 

algorithms. Finally, the GFP spectral bands, i.e. 508 nm and 510 nm in our case, were removed from the image cubes to 

avoid the effect of GFP signals on the classification process. Filtering methods may be used as a pre-processing step to 

reduce noise in images [20] [21]. 

2.4 Tensor Decomposition for Feature Extraction and Classification 

Hyperspectral data is composed of hundreds of gray images over a wide range of electromagnetic spectra. For each pixel 

in the image, the intensity over each spectral band forms a spectral curve, which is the spectral feature used in pixel-

based classification method as shown in Figure 1.  

 

Figure 1. Hyperspectral imaging and illustration of pixel-based Classification 

 

Tensor provides a natural representation for hyperspectral data. In the remote sensing area, tensor modeling has been 

increasingly utilized for target detection [22], denoising [23], dimensionality reduction [24] [25], and classification [26] 

[27-29]. An N-way or Nth-order tensor X ∈ RI1×I2×⋯×In is a multidimensional array represented using 𝑁 indices. A first-

order tensor is a vector, a second-order tensor is a matrix, and tensors of order three or higher are called higher-order 

tensors [30]. The order of a tensor is the number of dimensions, also known as modes. In this study, we used the Tucker 
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tensor model [31]. Tucker decomposition is a form of high-order principle component analysis (PCA). An N-way Tucker 

tensor 𝑋  can be decomposed into a core tensor G ∈ℝR1×R2×⋯×RN  multiplied or transformed by a set of component 

matrices A
(n)

=[a1

(n)
,a2

(n)
,⋯,aRn

(n)
] ∈ RIn × Rn(n=1,2,…N) [32]:   

X= ∑ ∑ ⋯ ∑ g
j1j2⋯jn

(aj1

(1)
∘aj2

(2)
∘⋯ajN

(N)
)

RN

jN=1

R2

j2=1

R1

j1=1

+ℇ 

    =G×1A
(1)

×2A
(2)⋯×NA

(N)
+ ℇ 

    =X̂+ℇ 

where symbol “∘” represents outer product, G×1A
(1)

×2A
(2)⋯×NA

(N)
denotes the multiplication in all possible modes of a 

tensor G and a set of matrices A
(n)

. X̂ is an approximation of X and ℇ presents the approximation error.  

To fully exploit the natural multi-way structure of hyperspectral data, we construct a spectral-spatial representation 

by dividing each image in the hypercube with a dimension of 1,024×1,392×249, where 1,024 and 1,392 denotes the row 

and column number of the hypercube, respectively and 249 denotes the number of spectral bands, into small local 

patches, each of which consists of I1×I2 pixels. We assume that within each neighborhood, each pixel has the same label 

(tumor or normal) since the spectral property of each pixel is similar. Therefore, we can form a 3 way tensor X∈ ℝI1×I2×I3 

(I3 = 𝜆 represents the number of spectral bands), which incorporates both the spatial and spectral information. Figure 2 

illustrates the spectral-spatial tensor representation of the hypercube.  

 

 

Figure 2. Spectral-spatial representation of an HSI hypercube. 

 

In this study, eight hypercubes from four mice with head and neck xenograft tumors were used for the hyperspectral 

image analysis. The leave-one-out cross validation method was used for the evaluation by dividing the eight image cubes 

with one of these cubes as testing data and the rest as training data. For each hypercube, we used the GFP composite 
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image as the gold standard to delineate the tumor margin. The training data was constructed by concatenating K sample 

patches as a 4-D tensor of size I1×I2×I3×K, and the testing data was formed in the same manner. We first performed the 

third-order orthogonal tucker tensor decomposition along the mode-4 on the training data, using higher order 

discriminant analysis (HODA) [32], which is a generalization of linear discriminant analysis (LDA) for multi-way data. 

After the Tucker decomposition, the core tensor G∈ℝP×Q×R, which expressed the interaction among basis components, 

was vectorized into a feature vector with a length of P×Q×R as the training feature. The dimension of the tensor feature 

can be much less than that of the original pixel-based feature. Therefore, dimension reduction can be achieved by 

projecting the original tensors X to the core tensors G with proper dimensions for P, Q, R. To extract features from 

testing data, the basis matrices A
(𝑛)

found from training data is used to calculate the core tensor, and the corresponding 

core tensor was then converted into a testing feature vector. If the feature dimension is still high after the feature 

extraction step, feature ranking or feature selection method can be applied to further reduce the feature dimension. 

Finally, a classifier is used to classify the tissue to be tumor or normal tissue. The flowchart for the classification 

framework is illustrated in Figure 3.  

 

Figure. 3 Flowchart of the Classification Algorithm 

2.5 Evaluation Methods 

Accuracy, sensitivity, specificity are commonly used performance metrics in medical image processing literatures [33] 

[14] [34] [35]. To evaluate the performance of classifiers, accuracy, sensitivity, specificity and F-score were investigated 

in the experiment. Table 1 shows the confusion matrix, which contains information about actual and predicted 

classification results performed by a classifier.  

Table 1 Confusion Matrix 

 

Predicted Results 

Negative Positive 

Gold Standard 
Negative True Negative (TN) False Positive (FP) 

Positive False Negative (FN) True Positive (TP) 

 

The definitions of accuracy, precision, sensitivity, specificity are as follows: 

Accuracy = 
TP + TN

TP + FP + FN + TN
;  Precision = 

TP

TP + FP
;  Sensitivity =

TP

TP + FN
;  Specificity = 

TN

TN + FP
 

F-score is the harmonic mean of precision and sensitivity: 

F = 2 × 
precision × sensitivity

precision + sensitivity
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(a) Tensor-based classification results 

 

(b) Pixel-based classification results 

Figure 4. Comparison of two classification methods with different feature dimensions 

3. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this study, we chose the patch size of 3 × 3 to retain the local spatial and spectral information in a tensor structure. 

Each HSI cube was divided into 346 × 464 = 160,544 patches, including both tumor and normal patches. Since a tumor 

region was much smaller than the normal region, we randomly chose the same number of patches from the normal tissue 

region as that of the tumor patches, and then concatenated all the tumor and normal patches from seven of the HSI cubes 

as the training tensor with a dimension of 3 × 3 × 249 × K (K is the number of all the training patches). Similarly, 

testing tensor was constructed by the patches from the rest mouse.  

After feature extraction by Tucker tensor decomposition, the dimension of the features was still high for 

classification, so we ranked the extracted features using fisher scores [36]. A K-nearest neighbor (KNN) classifier was 

used to classify the data with different feature dimensions. As can be seen from Figure 4 (a), although the sensitivity 

went up slightly and the specificity went down as feature dimension went higher, the classification accuracies of the 
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eight mouse data were not sensitive to feature dimensions, which indicate that the feature dimension can be significantly 

reduced without sacrificing the accuracy. Therefore, we selected the top-one dominant feature for classification.  

Furthermore, we also implemented a pixel-based classification method using the averaged absorbance spectra of 

each pixel over each local patch. First, a spectral feature vector consisting of optical density values from all the image 

bands for each pixel of a mouse was formed, and then centered by subtracting the mean values. Afterwards, PCA was 

performed to reduce the feature dimension. Finally, the original hypercube was approximated by the inverse principle 

component transformation, with the first few bands containing the majority of information residing in the original 

hypercube [37]. KNN classifier was employed to classify the data with different feature dimensions. Figure 4 (b) shows 

that PCA feature dimension has significant effect on the classification accuracy. As the feature dimension grew higher, 

the classification accuracy, sensitivity, and specificity became much higher. Although the first PCA image band has the 

highest contrast or variance, the classification accuracy only achieved about 50%. While the top tensor feature alone 

achieved an accuracy of around 90%. Therefore, higher feature dimension and longer classification time is needed in 

order to achieve better accuracy for the pixel-based PCA method. As illustrated in Figure 4 (b), more than 100 features 

were required in order to obtain an accuracy of 80% with the PCA dimension reduction method. The tensor-based 

method kept the nature structure of hyperspectral data, and the dimension reduction based on tensor features significantly 

reduced the classification time.   

Table 1.  Comparison of Classification Performance 

Mouse 

ID 

Days after tumor 

cell injection 
Methods Accuracy Sensitivity Specificity F-score 

1 

21 
Tensor Modeling 91.52% 99.82% 83.22% 0.92 

Pixel-Wise 50.01% 100.00% 0.03% 0.67 

26 
Tensor Modeling 94.82% 96.93% 92.72% 0.95 

Pixel-Wise 68.34% 63.36% 73.33% 0.67 

2 

21 
Tensor Modeling 91.96% 90.03% 93.90% 0.92 

Pixel-Wise 50.00% 100.00% 0.00% 0.67 

26 
Tensor Modeling 91.74% 94.77% 88.72% 0.92 

Pixel-Wise 60.38% 72.04% 48.72% 0.65 

3 

21 
Tensor Modeling 82.84% 99.37% 66.30% 0.85 

Pixel-Wise 49.98% 99.96% 0.00% 0.67 

35 
Tensor Modeling 92.96% 99.97% 85.95% 0.93 

Pixel-Wise 65.52% 69.87% 61.17% 0.67 

4 

21 
Tensor Modeling 67.71% 35.58% 99.84% 0.52 

Pixel-Wise 50.00% 100.00% 0.00% 0.67 

36 
Tensor Modeling 97.26% 96.22% 98.30% 0.97 

Pixel-Wise 65.79% 60.15% 71.43% 0.64 

 

After feature dimension reduction, the top tensor feature was selected for classification. We used Support Vector 

Machine (SVM) as our classifier, and chose the Gaussian radial basis function (RBF) as the kernel function for SVM. 

We performed three-fold cross validation (CV) and a grid search on the training data to select the optimal value for 

parameter C and g over the range of log
2

C ={-5, -4, ⋯, 0, ⋯, 4, 5} and log
2

g ={-5, -4, ⋯,0,⋯, 4, 5}. Then a new SVM 

model was trained with the optimal parameters on seven mice data, and the performance of that model was tested on the 

rest mouse. For each mouse data, tumor dataset consisted of all the patches within the tumor region, and normal dataset 

was randomly selected from the normal tissue region with the same size as the tumor. With only one feature dimension, 

the classification time was significantly reduced.  
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To compare the pixel-wise method with the tensor-modeling method, we ranked the significance of pixel absorption 

value at each wavelength from 450 nm to 950 nm (excluding the two GFP bands) according to Fisher’s score, and picked 

the pixel with the top absorption value for classification. Similarly, we used the SVM classifier and compared it with the 

proposed method. Three-fold cross validation (CV) and a grid search were performed to find the optimal parameter C 

and g over the range of log
2

C ={-5, -4, ⋯, 0, ⋯, 4, 5} and log
2

g ={-5, -4, ⋯, 0, ⋯, 4, 5}.  

The classification accuracy, sensitivity, specificity, and F-score of the above two methods are listed in Table 1. With 

only one feature dimension, the proposed method achieved promising results. Our proposed classification method 

outperformed the pixel-based method. For the pixel-wise classification method, the result was very poor with only one 

feature dimension. This indicated that even the most sensitive wavelength band didn’t perform as well as the top tensor 

feature, and that feature extraction based on tensor modeling was effective in extracting the most important information 

for distinguishing tumor from normal tissue. 

For each mouse, HSI dataset at two time points after tumor injection were used for classification. In general, the 

classification performance was better at the second time point than that at the first time point, probably because the 

spectral difference between the cancerous and healthy tissue became more distinct as tumor grew larger. The tumor sizes 

at the first time point were about half of the sizes at the second time point. For all four mice, the average accuracy by 

tensor modeling achieved 83.51% at the first time point and 94.20% at the second time point.  

We also noticed that the 4th mouse gave the worst classification accuracy compared to other mice with the tensor-

modeling method. The classification performance of the 4th mouse at the first time point was relatively poor compared to 

all other mice as shown in Table 1. Figure 5 shows the tumor detection result of the 4th mouse using the tensor modeling 

method.  

 

(a) HSI composite image  

 

 (b) GFP composite  image (gold 

standard) 

 

 (c) Cancer detection result 

Figure 5. Tumor detection results with the tensor modeling method. (a) HSI composite images of a tumor-bearing mouse. 

The tumor was mirrored in order to capture the whole tumor. (b) GFP composite images that serve as the gold standard 

for evaluation. (c) Detection results where green color represents the cancer pixels detected by the tensor modeling 

method. 

To further compare the mice at two different time point, quantitative analysis was performed to compare the 

absorption spectra i.e. optical density of the cancerous and normal tissue. The average absorption spectra of all the pixels 

within the cancerous region and the normal region of the eight mouse data were computed and compared for two 

different time points. The absorption spectra of cancer tissue differed significantly from those of normal tissue for all the 

mouse data. Figure 6 shows the absorption spectra of the 4th mouse at two different time points. The left one is at 21-day 

after tumor cell injection, and the right one is at the 35-day after injection. It was found that the absorption spectra of the 

4th mouse from two different time points were very different after normalization. In particular, the spectra at the range of 

550 nm to 900 nm has larger difference between the tumor and normal tissue at the second time points, which facilitated 

the classification task and gave better performance as shown in Table 1.  
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Figure 6. Absorption spectra of cancerous and normal tissue. The left figure represents the spectra of a mouse 21 

days after tumor cell injection. The right figure represents the spectra of the same mouse 35 days after injection. 

4. CONCLUSIONS 

Hyperspectral imaging combines both the chemical specificity of spectroscopy and the spatial resolution of imaging. 

Compared to optical spectroscopy, hyperspectral imaging is able to capture images of a large area of tissue noninvasively, 

without the administration of contrast agents.  

In this study, we introduced a new spatial-spectral classification framework based on tensor modeling for 

hyperspectral imaging in the application of the head and neck cancer detection. This method incorporates both spatial 

and spectral information of the hypercube and performs dimensionality reduction. With the proposed classification 

framework, we are able to distinguish between tumor and normal tissue in animal experiments with different tumor sizes. 

Preliminary results demonstrated that the hyperspectral imaging and classification methods are promising for head and 

neck cancer detection. With the proposed classification method, we are able to distinguish between malignant tissue and 

healthy tissue with an average sensitivity of 96.97% and an average specificity of 91.42% for tumor-bearing mice one 

month after tumor injection. To move forward to achieve the goal of early cancer detection, future study for 

differentiating between normal, pre-malignant, and malignant cancerous tissues is planned. 
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