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ABSTRACT   

Hyperspectral imaging (HSI) is an emerging modality for medical applications and holds great potential for 
noninvasive early detection of cancer. It has been reported that early cancer detection can improve the survival 
and quality of life of head and neck cancer patients. In this paper, we explored the possibility of differentiating 
between premalignant lesions and healthy tongue tissue using hyperspectral imaging in a chemical induced oral 
cancer animal model. We proposed a novel classification algorithm for cancer detection using hyperspectral 
images. The method detected the dysplastic tissue with an average area under the curve (AUC) of 0.89. The 
hyperspectral imaging and classification technique may provide a new tool for oral cancer detection.   
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1. INTRODUCTION 

In 2015, approximately 45,780 people are expected to be diagnosed with oral cavity and pharynx cancer and 
8,650 were expected to die from the disease in the United States [1]. If oral and pharynx cancer are diagnosed at 
an early stage, the 5-year survival rate is 83% [2]. However, about 75% of the cases have regional or distant 
spread of their disease at the time of diagnosis, with 5-year survival rates ranging from 37% to 61% [2].  Late 
stage diagnosis is also associated with high rates of second primary tumor and recurrence of the tumor [3]. Early 
detection represents one of the most promising approaches to improve both survival and quality of life of cancer 
patients because it enables a surgical, curative approach. For the overall population, shifting all cases to early 
detection would have a significant impact on overall cancer mortality and economic burden [4]. Screening 
methods that can detect precursor lesions or in situ disease hold even more promise, namely the possibility of 
eliminating the invasive condition and reducing the burden of the disease. 

More than 90% of malignant neoplasms of the oral cavity and oropharynx occur in mucosal epithelium, some of 
which can be directly visualized [5]. Thus, the most common procedure for cancer screening consists of visual 
inspection of the entire tissue surface at risk under white light illumination, followed by biopsy of any 
suspicious tissue regions to make definitive diagnosis of its type and cancerous potential [6]. However, it is 
often difficult even for an experienced clinician to differentiate benign lesions from premalignant lesions and 
subsequently decide the area to biopsy. Due to the heterogeneous morphology and visual appearance of the 
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lesions, biopsy diagnosis may not be representative of the highest pathological grade of a tumor due to the small 
sampling area [7]. This biopsy procedure is time-consuming and invasive. In addition, the interpretation of the 
histological slides of the biopsy tissue is subjective and inconsistent due to intra-observer and inter-observer 
variation [6] [8]. Therefore, a technique that can detect premalignant changes and lesions at an earlier stage in a 
reliable and noninvasive way would be very useful in the clinic. 

Hyperspectral imaging (HSI) has the potential to detect malignant lesions earlier before they become 
macroscopically visible.  In addition, HSI may prove to be a more objective technique supplementing the 
clinical impression, which is known to vary among medical practitioners. HSI is a label-free, noninvasive, and 
nonionizing imaging technology that expands human vision from visible to the ultraviolet (UV) to near-infrared 
(NIR) region of light. The basic principle of HSI is to acquire a stack of two-dimensional (2D) images over 
continuous spectral across a wide range of electromagnetic spectra e.g. from the UV to NIR regions. The 
rationale for cancer detection with HSI is that the spectral fingerprint of light diffusely reflected from tissue is 
influenced by biochemical and morphological changes that occur as disease changes tissue pathology. 
Hyperspectral images, which contain high-dimensional spectral information at each image location, can be 
analyzed by computer vision and machine learning methods for visualization, characterization and 
quantification of biological processes at the cellular, molecular, tissue and organ levels [9]. 

Our group has investigated the feasibility of using HSI for cancer detection in a tumor mouse model of prostate 
cancer [10] as well as head and neck cancer [11] [12] [13] [14] [15]. In this study, we aim to evaluate the 
capability of HSI for early detection of head and neck cancer in a chemically-induced cancer model. A 4-
nitroquinoline-1-oxide (4NQO)-induced oral cancer model is imaged at multiple time points with hyperspectral 
imaging to study the carcinogenesis process of tongue cancer in mice. 4NQO is water soluble and can be added 
to the drinking water of the rodents to induce squamous cell carcinoma (SCC) of the palate, tongue, and 
esophagus. This model is ideal for studying premalignant lesions since the development of fully malignant SCC 
is clearly preceded by increasing grades of dysplastic changes, which mimics the development of oral cancer in 
human. A novel supervised classification scheme was proposed to distinguish dysplastic lesions from healthy 
tongue tissue.   

2. MATERIALS AND METHODS 

2.1 Instrumentation  

A CRI Maestro in-vivo imaging system was used to acquire hyperspectral images. This system consists of a 
Xenon light source, a solid-state liquid crystal filter and a 16-bit high-resolution charge-coupled device (CCD). 
Details about this system has been described in our previous papers [16] [17]. This system is capable of 
obtaining reflectance images over the range of 450-950 nm with 5 nm increment, as well as fluorescence images 
under different excitation light. 

2.2 Mouse Tongue Carcinogenesis Model 

Six-week-old female CBA/J mice were purchased from the Jackson Laboratory and were used for the studies 
with 4-NQO. Animals were housed in the Animal Resource Facility of our institution under controlled 
conditions and fed sterilized special diet (Teklad global 10% protein rodent diet, Harlan) and autoclaved water. 
4-NQO powder (Sigma Aldrich, St. Louis, USA) was diluted in the drinking water for mice. The water was 
changed once a week. Mice were allowed access to the drinking water at all times during the treatment. The 
body weights of the mice were measured once a week to monitor the tumor burden. Mice were scanned with 
hyperspectral imaging once a month for up to 24 weeks or until the signs of sickness or weight loss.  

2.3 Data Acquisition 

All the mice were scanned with our hyperspectral imaging system at week 8, 12, 20, 24 for reflectance images. 
The imaging procedures mainly involve the following steps: 1) Acquire white and dark reference hypercube 
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before the mouse imaging; White reference image cubes are acquired by placing a standard white reference 
board in the field of view. The dark reference cubes are acquired by keeping the camera shutter closed. 2) 
Euthanize the mice and acquire the tongue tissue for immediate ex vivo imaging. Hyperspectral reflectance 
images are acquired with both the white light source and the interior near-infrared light over the wavelength 
range of 450-950 nm with 5 nm increment.  

Immediately after imaging, selected mice were euthanized and their tongues were procured for histological 
processing. The ventral surface of the tongue was inked with blue on the left side and with red on the right side, 
and kept in 10% formalin overnight. Tongue tissue from both 4NQO-treated and control groups were embedded 
in paraffin, sectioned vertically down the dorsal surface into 5 µm sections, and stained with hematoxylin and 
eosin (H&E). The H&E slides were then reviewed by an experienced pathologist specialized in oral cancer, who 
segmented the section into pathological regions of normal, dysplasia, carcinoma in situ, and squamous cell 
carcinoma.  

2.4 Overview of the Hyperspectral Imaging Approach 

The flowchart of the proposed method is shown in Figure 1. First, the raw reflectance hypercube of the ex vivo 
tongue is preprocessed to normalized the reflectance data using the white and dark reference images. Next, the 
pathological gold standard is aligned with the ex vivo tongue. To achieve the alignment, three steps are 
conducted: (1) synthesize an RGB image from each normalized hyercube; (2) run the simple linear iterative 
clustering (SLIC) superpixel segmentation algorithm [18] on the RGB image to over-segment the tongue; (3) 
build a pathological gold standard matrix with each row represent one line on the tongue, and map the 
pathological matrix onto the tongue to obtain the label for each segment. Finally, a supervised classification 
method is applied to classify the superpixels of the tongue into normal or tumor tissue.  

 
Figure 1. Flowchart of the proposed method 

2.5 Data Normalization  

Data normalization is required to eliminate the spectral non-uniformity of the illumination and the influence of 
the dark current. Then the raw data can be converted into normalized reflectance using the following equation: =                                                                    (1) 

where  is the calculated normalized reflectance value for each wavelength.  is the intensity 
value of a sample pixel.  and  are the corresponding pixel from the white and dark reference 
images at the same wavelength as the sample image.  
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2.6 Alignment between HSI and Histology 

To compare the cancer detection results from the hyperspectral images with histology gold standard, a two-
dimensional color-coded pathology map was created for each tongue specimen. Each tongue specimen was 
sectioned into a series of 5 µm tissue sections with 100 µm intervals between sections. Each tissue section 
represented one longitudinal line parallel to the midline on the dorsal surface of the tongue. The H&E slide from 
each section was reviewed by an experienced head and neck pathologist, who segmented the section into regions 
of normal, dysplasia, carcinoma in situ and carcinoma. The length of the tongue slice and the length of different 
pathological regions along each slice were measured. So the gold standard can be constructed as a matrix with 
each row as one tongue slice and each column as one pathology type. Missing sections or sections without a 
pathology reading are denoted by zero entries in the matrix. Therefore a color-coded pathology map can be 
created and aligned with the hyperspectral images of the tongue. 

RGB images were synthesized from the reflectance hypercubes of the ex vivo tongues, and then over-segmented 
into multiple superpixels. The pathology matrix was then mapped onto each tongue and overlaid with the 
superpixels. The pathological reading for each superpixel was determined by the majority pathological type of 
the pixels within each superpixels.   

2.7 Supervised Classification and Evaluation 

The spectral curves of individual pixels within each superpixel segment were averaged as the feature of the 
superpixel. Dysplasia, carcinoma in situ and carcinoma were all considered as tumor in this study. Each 
superpixel was assigned a label of tumor or normal after classification. Five mice from week 12 and week 20 
with pathological reading were selected to test the supervised classification. The leave-one-out cross validation 
method was used in the study. For each run, four of the mice were chosen to build the training database, and the 
rest one was tested on the model. Six different classifiers, including random forest (RF) [19], linear discriminate 
analysis (LDA) [20], support vector machine (SVM) [21], naïve bayes (NB), k-nearest neighbors (KNN) [22], 
and decision trees (DT) [23], were used and compared for classification. Receiver operating characteristic 
(ROC) curves and the areas under the ROC curve were used to assess the performance of the supervised 
classification.   

3. RESULTS AND DISCUSSIONS  

3.1 Spectral Fingerprints 

Figure 2 shows the average spectral curve of pre-malignant lesion (red dotted line) and normal tissue (blue solid 
line) from a typical 4NQO-treated tongue. It was observed that the average intensity of tumor tissue was higher 
than normal tissue across all the wavelengths for all the five mice. In addition, the differences between tumor 
and normal tissue were much larger within the wavelength region of 600-850 nm than other wavelength regions. 
Reflectance intensities from 900 to 950 nm were removed from features due to high noise in this wavelength 
range. 
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Figure 2. Example spectral curves of tumor and normal tissue from a 4NQO-treated tongue. (a) Spectral curves of healthy, 
dysplasia, carcinoma in situ (cin) and carcinoma. (b) Spectral curves of healthy and tumor (including dysplasia, carcinoma in 
situ, and carcinoma). 

3.2 Classification Results 

Table 1 shows the AUC values of the six different classifiers (RF: random forest, LDA: linear discriminate 
analysis, SVM: support vector machine, NB: naïve bayes, KNN: k-nearest neighbors, and DT: decision trees) 
for distinguishing tumor from normal tissue. It can be seen that the random forest classifier performed the best 
among all the six classifiers, with an average AUC value of 0.892. In this experiment, 1500 trees were chosen to 
grow in parallel in MATLAB for each random forest.  

Table 1. Performance comparison of different classifiers for differentiating normal and tumor tissue. 

Classifier Mouse #1 Mouse #2 Mouse #3 Mouse #4 Mouse #5 Average 

RF 0.807 0.930 0.917 0.903 0.905 0.892 

LDA 0.799 0.925 0.897 0.932 0.898 0.890 

SVM 0.801 0.936 0.893 0.913 0.899 0.889 

NB 0.637 0.868 0.898 0.869 0.902 0.835 

KNN 0.713 0.859 0.865 0.859 0.838 0.827 

DT 0.621 0.788 0.752 0.797 0.766 0.745 

 

Table 2 shows the AUC values of the six different classifiers for distinguishing dysplasia from normal tissue. 
SVM classifier performed the best among all six classifiers, with an average AUC value of 0.886.  

Table 2. Comparison of different classifiers for differentiating dysplasia from normal tissue 

Classifier Mouse #1 Mouse #2 Mouse #3 Mouse #4 Mouse #5 Average 

SVM 0.785 0.924 0.914 0.914 0.893 0.886 

LDA 0.791 0.904 0.908 0.921 0.888 0.883 

RF 0.773 0.916 0.918 0.898 0.896 0.880 

NB 0.631 0.854 0.898 0.859 0.897 0.828 

KNN 0.670 0.741 0.783 0.761 0.726 0.736 

DT 0.668 0.731 0.783 0.717 0.743 0.729 
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Figure 3 shows the ROC curves of all five mice with the RF classifier. All the curves are above the diagonal 
line. These curves demonstrated that the random forest method is effective in classifying tumor from normal 
tongue tissue.  

  
Figure 3. ROC curves of all five mice with the random forest classifiers. (a) Differentiation between normal and tumor 
(including dysplasia, carcinoma in situ, and carcinoma) (b) differentiation between normal and precursor lesions (dysplasia) 

 

Figure 4 demonstrates the process of the pathology gold standard generation from histology slides for the tongue 
and the prediction map from the random forest classification method. The SLIC superpixel method captures the 
natural boundary of the local regions in the tongue, and over-segmented the tongue into small regions of about 
25 pixels. Averaging the spectral curves of individual pixels within each superpixel suppressed the within-class 
variations in the spectral curve, and provided a characterizing feature for each superpixel. It can be found from 
(c) that carcinoma and carcinoma in situ regions could be small and isolated regions, so it would be difficult to 
identify these small regions if they were considered as a separate class. In addition, dysplasia tissue is the most 
commonly seen pathological type in all the 4NQO-treated mice, which make it possible to automatically 
distinguish between pre-malignant lesion and normal tissue. Hence, we proceeded to binarize the tongue into 
normal and tumor regions. The color map in (e) is the classification map provided by the random forest 
classifier with an AUC value of 0.93.  

 
Figure 4. Comparison of the histological gold standard map and the image classification result. (a) Synthetic RGB image 
from the reflectance hypercube. (b) Over-segmented tongue image using the SLIC superpixel method. (c) Gold standard 
overlaid with superpixels to generate pathological readings for each superpixel. Blue color denotes healthy tissue, green 
color denotes dysplasia, yellow color denotes carcinoma in situ, and red color denotes carcinoma. (d) Binarized gold 
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standard map with the healthy tissue region in blue and non-healthy region in red. (e) Prediction by the random forest 
classifier with the healthy tissue region in blue and the non-healthy region in red. 

 

To the best of our knowledge, it is the first time that reflectance hyperspectral imaging was tested on a 
chemically-induced tongue cancer model for non-invasive early cancer detection. The proposed method 
employed superpixel over-segmentation combined with pathologic mapping to align histology sections with ex 
vivo tongues. The random forest based classifier was found to be the most effective classifier among the six 
classifiers for the distinction of tumor from normal tissue in our study.  

4. CONCLUSIONS 

In this paper, we developed a hyperspectral imaging method for monitoring the oral carcinogenesis process and 
proposed a new classification algorithm for tongue cancer detection using hyperspectral images. With the 
proposed classification method, we were able to differentiated cancer from healthy tissue in our animal cancer 
model. Further development and translation of this technology are warranted to provide a potential tool for early 
detection of oral cancer in human patients. Hyperspectral imaging may be used as a noninvasive tool for tongue 
cancer screening.  
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