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Abstract

Purpose—Accurate segmentation of the prostate on ultrasound images has many applications in 

prostate cancer diagnosis and therapy. Transrectal ultrasound (TRUS) has been routinely used to 

guide prostate biopsy. This manuscript proposes a semiautomatic segmentation method for the 

prostate on three-dimensional (3D) TRUS images.

Methods—The proposed segmentation method uses a context-classification based, random walk 

algorithm. Because context information reflects patient-specific characteristics and prostate 

changes in the adjacent slices, and classification information reflects population-based prior 

knowledge, we combine the context and classification information at the same time in order to 

define the applicable population and patient-specific knowledge so as to more accurately 

determine the seed points for the random walk algorithm. The method is initialized with the user 

drawing the prostate and non-prostate circles on the mid-gland slice and then automatically 

segments the prostate on other slices. To achieve reliable classification, we use a new adaptive k-

means algorithm to cluster the training data and train multiple decision tree classifiers. According 

to the patient-specific characteristics, the most suitable classifier is selected and combined with the 

context information in order to locate the seed points. By providing accuracy locations of the seed 

points, the random walk algorithm improves segmentation performance.

Results—We evaluate the proposed segmentation approach on a set of 3D TRUS volumes of 

prostate patients. The experimental results show that our method achieved a Dice similarity 

coefficient of 91.0% ± 1.6% as compared to manual segmentation by clinically experienced 

radiologist.

Conclusions—The random walk based segmentation framework, which combines patient-

specific characteristics and population information, is effective for segmenting the prostate on 
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ultrasound images. The segmentation method can have various applications in ultrasound-guided 

prostate procedures.

Keywords

Image segmentation; context; classification; random walk; transrectal ultrasound (TRUS); prostate 
cancer

I. INTRODUCTION

Prostate cancer is one of the major causes of cancer mortality in American men, and it is 

estimated that there were 180,890 new cases of prostate cancer in the United States in 2016, 

and which accounts for 21% of all cases in men.1 Transrectal ultrasound (TRUS) guided 

biopsy is the standard care for definitive diagnosis of prostate cancer.2, 3 Three-dimensional 

(3D) TRUS can provide 3D visualization of the prostate and its combination with magnetic 

resonance imaging (MRI) has been used to improve the detection of prostate cancer.

Accurate prostate segmentation in 3D TRUS images can provide an accurate measurement 

of the prostate volume. After segmentation, the 3D model of the prostate can be used for the 

planning of MRI/TRUS fusion guided biopsy. Segmentation of the prostate can also be used 

in brachytherapy planning. As manual segmentation is time-consuming and relies upon the 

experience of the clinician, automatic or semiautomatic segmentation can have much value 

in clinical applications. Various efforts have been made to segment the prostate on 

ultrasound images,4 which include the contour-based methods, region-based methods, 

classification-based methods, and hybrid methods, as described in the following section.

The contour-based methods use the prostate boundary or edge information to guide the 

segmentation.5–23 As they depend on reliable edge information, they may be adversely 

affected by the presence of shadow artifacts seen on the ultrasound images.24 The region-

based methods use the predominant intensity distributions of the prostate region to guide the 

segmentation.25–27 They may, however, show an incomplete prostate region because the 

prostate is not uniform. The classification-based methods use features extracted from 

ultrasound images to cluster or classify the image into the prostate and non-prostate.28 

Because of intensity heterogeneity and unreliable texture, a pure, classification-based 

segmentation method can have difficulties to reliably segment the prostate gland on 

ultrasound images. Therefore, the segmentation methods based on a single type of 

information, such as the contour, region or classification information, may make it difficult 

to achieve satisfactory performance in the practical applications.

Hybrid-based methods can maximize the advantage of each type of information by 

combining multiple kinds of information, such as contour, region, and/or classification, in 

order to segment the prostate.29–37 Akbari et al. combined the statistical shape (contour 

information), classification information, and intensity profiles (region information) to 

complete the prostate segmentation. In the first step, they trained a set of wavelet support 

vector machines (SVM) to adaptively capture the features of the ultrasound images in order 

to differentiate the prostate and non-prostate tissue. In the second step, they modified the 

surfaces based on the shape model and intensity profiles. These two steps are repeated until 
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they converge to get the final segmented prostate.29–32 In another study, an energy function 

was proposed to combine a shape model and region-based information in a Bayesian 

framework in order to segment the 3D prostate in a level-set framework.33 In another 

automatic 3D segmentation method, statistical textures were obtained from Gabor filters, 

and multi-atlas registration and SVMs were used to segment the prostate.34 Zhan et al. 
trained the SVMs to measure the probability of voxels belonging to the prostate and used 

those classification results to define an energy function in order to drive the surface of the 

deformable model for the prostate segmentation.35, 36 They also used a Zernike moment-

based edge detector for boundary identification and designed a new SVM training method 

for effectively reducing the number of support vectors.37 Multi-atlas registration and 

anatomical signatures were also used for the segmentation of the prostate on ultrasound 

images.38

Although the hybrid-based methods may be able to improve segmentation performance 

because of the combination of multiple information, the existing hybrid methods still suffer 

from two problems: 1) They depend on the population data and use the shape model or atlas 

obtained from the population to guide the segmentation of the prostate; and 2) They may be 

not robust due to the low signal-to-noise ratio for ultrasound image. For example, level-set-

based methods can be affected by the speckles on TRUS images, and thus leading to 

segmentation leakage.

In this manuscript, we introduce a hybrid algorithm combining the region and classification 

information for the segmentation of the prostate on ultrasound images. On the one hand, we 

cluster the population data using a new adaptive k-means method and then train multiple 

classifiers. For a new patient, we use the patient-specific character to choose the most 

suitable classifier to obtain the classification information. Although we still use the 

population information for the segmentation, we analyze the relationship between the 

population and patient-specific character for selecting applicable population knowledge for 

prostate segmentation. On the other hand, a random walk algorithm may have the attractive 

advantage that it can avoid segmentation leakage and shrinking bias and is thus robust to the 

low-contrast, speckle microcalcifications and imaging artifacts on the ultrasound 

images.38, 39 Therefore, we choose the random walk method to express the region 

information. Our method uses both the population and patient-specific character to 

determine the prostate and non-prostate pixels, and the prostate and non-prostate pixels are 

chosen as the seed points for initialization of the random walk algorithm for the prostate 

segmentation.

The proposed segmentation method is significant expansion of our preliminary study41 in 

the following aspects: (1) This proposed method involved an applicable population model 

selection method. We train multiple classifiers during the training procedure. For a new 

patient, we compare the patient-specific character and population character and select the 

best-match population knowledge for the patient-specific segmentation; (2) We tested 

whether the proposed method is sensitive to the user interaction and demonstrated that the 

method was robust and insensitive to the user interaction; (3) We significantly expanded the 

Introduction section and also included more details in the sections regarding the method, 

theoretical analysis, implementation, and comprehensive experiments; (4) We added a 
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Discussion section to investigate several, related problems; and (5) We used more 

measurements to evaluate the performance of the method.

The main contributions of this paper are summarized as follows: 1) We proposed a context-

classification based, random walk algorithm for the prostate segmentation. The random walk 

algorithm can avoid discretization errors, segmentation leakage, and shrinking bias in order 

to improve segmentation accuracy. To the best of our knowledge, our proposed random walk 

algorithm is used for the first time, for prostate segmentation on 3D ultrasound images; 2) 

We reduce user interaction. Instead of locating the seed points on all image slices by user, 

we just need the user interaction for the mid-gland slice. The applicable population and 

patient-specific knowledge is used to automatically determine the seed points on the other 

slices. It can improve the accuracy of the location of the initial seed points without the help 

of the user interaction and thus improve segmentation performance; and 3) Clinical data 

have demonstrated the robustness and accuracy of the proposed segmentation method that 

can be of particularly useful for our 3D TRUS-guided prostate biopsy application.

II. METHOD

We propose a new segmentation method for the prostate in 3D TRUS images by using a 

context-classification based, random walk algorithm which is called C-RW for short and is 

illustrated in Fig. 1. Our method includes two stages, i.e. the training and the segmentation 

stages. In the training stage, we cluster the dataset of manually segmented ultrasound images 

by radiologist, i.e., atlases, into k clusters, where k is an adaptive parameter. Then we extract 

the pixel features from the corresponding ultrasound images in each cluster to train the 

classifier. Therefore, we can get the k classifiers during the training process. In the 

segmentation stage, we perform the 3D segmentation by segmenting the prostate on each 2D 

slice. 1) For a new patient, we first initialize our algorithm with the user selecting the start 

and end slice of the prostate and drawing the fore- and background circles on the mid-gland 

slice, which correspond to the prostate and non-prostate regions, respectively. Based on 

these contour points, we run the random walk algorithm to segment the prostate on the mid-

gland slice and obtain the 2D segmented prostate mask. 2) We align the mask with the 

atlases in k clusters and select the closest cluster according to their overlap areas. 3) We 

compute the fore- and background seed points on the adjacent slice and segment the prostate 

until all slices were segmented. The details of the two stages are described in the following 

sections.

A. Train the k Decision Tree Classifiers

In the training stage, our objective is to obtain the classifiers to guide the prostate 

segmentation. As the prostates of different patients have different appearances, and even the 

prostate of the same patient could appear to have different shapes or sizes due to the 

patient’s position and condition, we train multiple classifiers to distinguish the prostate and 

non-prostate tissue. We cluster the dataset of the atlases by using a new, adaptive k-means 

method, and then extract the features from the corresponding ultrasound images in each 

cluster to train the classifiers.
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1) Registration of the Atlases—In order to obtain more accurate separation of 3D 

atlases, we pre-process the atlases to make them aligned in the same area and in the same 

orientation by using a registration procedure. We randomly select one 3D atlas as the fixed 

image and align the other 3D atlases (called the moving image) with the fixed one by using 

an intensity-based, image registration method. In this manuscript, we use the rigid 

transformation type and the mutual information as the similarity measure. We can obtain the 

optimized, transformed images when the registration process has reached the specified 

maximum number of iterations, 300.

2) Adaptive k-means Clustering—We used a k-means clustering method to 

automatically partition population data set k groups.42 The k-means algorithm has the 

advantage of favorable execution time and better performance, but it also has the 

disadvantage that the quality of the final clusters depends on the choice of k. Therefore, we 

proposed an adaptive k-means algorithm where k is an adaptive value according to the 

property of data. For clustering, we generally attempted to maximize intra-class similarity 

and inter-class differences. As the Fisher criterion can maximize the inter-class scatter over 

intra-class scatter,43 we used the Fisher criterion to evaluate the cluster performance with 

respect to k and chose the k with the best clustering performance. Let  be the feature of 

the j-th sample in the i-th cluster and Ni be the number of features in the i-th cluster. We can 

compute the mean of each cluster Mi:

(1)

and the mean of all features M as

(2)

Then, the intra-class distance Dintra can be determined by

(3)

and the inter-class distance Dintra can be determined by

(4)

Finally, the criterion function f(k) is computed as
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(5)

And the optimal k is computed by

(6)

The numerator of the criterion function is the number of the clusters. Obviously, the better 

generalization ability the k-mean method has, the smaller this value is, and the smaller the 

function value is. In the denominator, we consider the performance clustered by the k-mean 

method. Since the denominator indicates the discriminate results to the distances between 

the intra-class and inter-class clusters, the larger discriminate value proves that the k-mean 

with the k has a better cluster separation. Therefore, the smaller f(k) indicates the better 

clustering performance.

We compute the minimum bounding rectangle of the prostate for the aligned atlases and then 

extract the length, width, and height of the rectangle as well as the number of pixels 

belonging to the 3D prostate as their features. We use the k-means with k from 2 to N/2 (N is 

the number of training data) to cluster these features and use the criterion function in (5) to 

value the clustering performance. We chose the best k according to the minimum value of 

f(k).

3) Extract the Features—We need to choose the adaptive feature description in order to 

distinguish between prostate and non-prostate pixels. The local binary patterns (LBP) value 

is a highly discriminative texture descriptor and is insensitive to gray scale change.44 The 

LBP describe the relationship between a center pixel and its surrounding neighbors. For a 3 

× 3 neighboring condition, the LBP can be computed as

(7)

where Ic and In are the intensity of the center pixel and its neighborhood pixel and G(x) is a 

threshold, as defined by

(8)

In (7), the original neighborhood is thresholded by the intensity value of the center pixel. 

Those binary values are then converted to decimal for convenience as the LBP value of this 

center pixel.
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Since LBP is a highly discriminative texture descriptor, location information can indicate the 

probability of a pixel belonging to the prostate and the intensity information can reflect the 

local spatial variation in the boundary, we extract the three types of features for each pixel in 

the corresponding ultrasound images in each cluster. Specifically, the location feature is 

represented by the x, y, and z coordinates of the pixel, the intensity feature is the intensity 

value of the pixel, and the LBP feature is the LBP value calculated in (7). Fig. 2 shows the 

original images in sagittal, transverse, and coronal directions and their LBP features.

4) Train the Decision Tree—Based on these features, we train a classifier. The decision 

tree is the classifier that has fast speed and superior performance, especially for a binary 

classification problem.45 The decision-tree classifier is a tree which consists of a root node, 

several interior nodes, and leaf nodes. The objective of the decision tree algorithm is to grow 

into a tree, where the root node is the entire set of classes, whereas the terminal nodes 

represent the final classification results by splitting the nodes based on training samples and 

their labels. The split criterion is the discrimination ability measured by the purity measure 

and a single feature. Therefore, in each split process, it chooses the split which can 

maximize the difference of the impurity of the parent node t and its child nodes tl and tr such 

that

(9)

where p(t) is the purity of the node t and fl and fr are the features that reach into the left child 

tl and right child tr.

Since decision tree classifier, which has been widely applied to medical image classification, 

does not rely on any prior statistical assumption, we utilize the decision tree as the classifier 

and train a decision tree in each cluster. We then have k classifiers during the training 

process.

B. Random Walk-based Segmentation

In the segmentation stage, given a new patient, we perform the segmentation from the 

middle to both the apex and base slices until all slices are segmented. We then combine and 

smooth these 2D prostate masks to achieve a 3D-segmented prostate.

1) Random Walk—The random walk algorithm is an interactive segmentation method. 

Fig. 3 shows the flowchart of the random walk algorithm for segmentation. After the user 

marks the foreground and background seed points, the method constructs a weighted graph 

with the vertices corresponding to the pixels on the image and the edges representing the 

distance between connected vertices. The weighted value of edges can be calculated by

(10)

where Ii is the intensity of vertix i, and β is a free parameter to which we set 90 in our 

experiments according to Ref. 39. The random walk method performs segmentation by 
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computing the probabilities of unlabeled points first arriving at the seed points and by 

choosing the highest probability as the label. As the solution of the probability computation 

has been found to be the same as minimizing a combinatorial Dirichlet problem, we generate 

the Laplacian matrix to transform it into the Dirichlet problem for a partition.

A random walk is the process by which randomly moving objects wander away. Although it 

uses the image intensity to compute the edge weight, it takes the weight as the likelihood 

that a random walker will go across that edge. Based on randomness, random walker is more 

likely to reach the seed with the least steps and thus might avoid segmentation leakage and 

shrinking bias.

In this manuscript, we choose a 2D random walk algorithm to segment the prostate slice by 

slice because a 3D random walk will require more initial seed points and running time and 

has less than unity probability of reaching any point, including the starting point, as the 

number of steps approach infinity, while the 1D and 2D random walk have unity probability 

of reaching the starting point.46

2) Initialization—The user first selects the starting slice at the base of the prostate and the 

ending slice at the prostate apex. A slice at the mid-gland is then selected and the user draws 

the fore- and background circles according to the prostate and non-prostate regions. Based 

on these seed points on the circles, we run the 2D random walk algorithm to segment the 

prostate on the mid-gland slice and get its mask.

3) Classifier Selection—According to the mask on the mid-gland slice, we select the best 

suitable classifier from k classifiers. In each cluster, we align our mask with each of the 2D 

atlases on the mid-gland slice and compute the sum of their overlap areas as the similarity 

measure. With the maximum sum of the overlap areas, we obtain the closest cluster and its 

corresponding classifier from the k classifiers. We then use the transform matrix to 

transform the other slices to make them consistent with the training model.

4) Determine the Seed Points by Combining the Context and Classification 
Information—The important step is the determination of the initial seed points for the 

random walk algorithm because the user just marks the seed points on one slice. To obtain 

the highly accurate location information regarding the seed points, we combine the context 

and classification information in order to determine the location of the seed points.

The context information represents the patient-specific information obtained by the 

segmented mask on the adjacent slice. We assume that the difference between the shape and 

size of the prostate on the two adjacent slices is not likely to be large. Morphology is a broad 

set of image processing operations based on shapes.47 We use morphological operations to 

process the mask. Dilation can expand the object in an image, whereas erosion can shrink 

the objects. Therefore, we use the dilation and erosion operations to expand and shrink the 

mask on the adjacent slice. The fore- and background points on the adjacent slice are then 

used as the fore- and background points on the current slice, respectively. We provide an 

example with the size of five pixels in Fig. 4, where the solid red, dot green, and dash blue 

lines indicate the segmented mask on the adjacent slice, the shrunk mask, and the expanded 
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mask, respectively. We use the pixels inside the shrunk mask as the foreground points, as 

shown by the green points, and the pixels outside the expanded mask as the background 

points, as shown by the blue points. After the dilation and erosion operations, we obtain the 

fore- and background points and the probability of each pixel. In order to achieve a good 

performance, we decide the size of the expansion or the shrinking by segmentation 

experiments.

The classification information indicates the population information obtained by the trained 

classifier. Because the appearance, including the shape and size, of the prostate both in the 

base and apex regions differs from that in the mid-gland region and because the context 

information slightly changes the appearance of the segmented prostate, it is difficult to 

obtain a good segmentation performance based only on the context information. To 

overcome this problem, we involve the classification information to segment the prostate in 

the base and apex regions. We choose the best classifier and compute the probability of each 

pixel belonging to the prostate and non-prostate. Then we choose the pixels in which 

probabilities of belonging to the prostate are equal to 1 as the foreground seed points, and 

choose the pixels in which the probabilities of belonging to prostate are equal to 0, as the 

background seed points. Therefore, the number of seed points is not fixed and is a case-

specific number.

By combining the probability obtained by the two types in a weighted-sum form, we 

determine the final probability of each pixel. Let  and  be the probability of pixel i 
belonging to the fore- and background points according to the context information, 

respectively,  and  be the probability according to the classification result, and 

Pf(i) and Pb(i) be the final probability of being the prostate and non-prostate for pixel i, and 

they are computed by

(11)

where w1 and w2 is the weight assigned to the probability obtained by the context and 

classification information, respectively, and they are determined by

(12)

where the Dslice is the absolute difference between the number of current slices and mid-

gland slices, the ABslice is the absolute difference between the number of apex and base 
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slices, and the f(․) is an exponential function. Fig. 5 shows the base, mid-gland, apex, and the 

current slices, and what the Dslice and ABslice is. Therefore,  must be a positive 

number less than 1. The parameter Va, a coefficient to make a tradeoff between the impacts 

of the two factors, is determined by experiments. If we set Va to a minus value, we can get a 

decreasing function. If the slice to be segmented is far from the mid-gland slice, the value of 

the Dslice is large. Therefore, the value of w1 is becoming smaller and which means that the 

influence of the context information becomes less important and the classification 

information more important. Then we choose the numbers of the fore- and background seed 

points, Nf and Nb, in the descending order of final probability, and which are determined by

(13)

where  and  are the total number of fore- and background points obtained by the 

context information,  and  are the total number of fore- and background points 

obtained by the classification decision, and the round(·) is the nearest integer function to 

ensure that the number of foreground and background points is an integer.

5) Segmentation of the 3D prostate—Based on the seed points, we run the random 

walk method for the 2D prostate segmentation and propagate the process until all of the 

slices have been segmented. We then combine all the 2D prostate masks to form a 3D 

segmented prostate. And we use the Gaussian smooth with a fixed size of 5 pixels as the size 

of the convolution kernel to smooth the 3D prostate.

C. Evaluation Criteria

The performance of the algorithm is evaluated against the clinical gold-standard by 

computing the volumetric and surface-based distance measures. We use the Dice similarity 

coefficient (DSC), sensitivity, specificity, detection, false negative rate (FNR), and overlap 

error (OVE), to quantify shape similarity between our segmented prostate and the gold-

standard. And we calculate the Hausdorff distance (HD) between them to quantify the 

surface distance.48

The Dice similarity coefficient is the relative volume overlap between S and G, where S and 

G are the binary masks from our method and gold standard established by expert-defined 

segmentation, respectively. The DSC can be computed as:

(14)
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where TP, TN, FP, FN are the number of true positives, true negatives, false positives, and 

false negatives, respectively. “True positive” means that the pixels are correctly classified as 

the prostate. If a prostate pixel is incorrectly classified as a non-prostate, we call it “false 

negative”. In the same way, “true negative” means that a non-prostate pixel is correctly 

classified as non-prostate, whereas “false positive” means that a non-prostate pixel is 

correctly classified as the prostate.

Sensitivity measures the proportion of actual positives which are correctly identified as the 

prostate, and specificity measures the proportion of negatives which are correctly identified 

as non-prostate. They are determined by:

(15)

Detection is calculated as

(16)

The false negative rate is defined as the number of false negative voxels divided by the total 

number of the prostate voxels on the gold standard and is computed by

(17)

The overlap error is determined by determining the non-overlap area between the segmented 

result and the gold standard:

(18)

Hausdorff distance measures how far two subsets of points are obtained by our proposed 

method and gold standard and is defined as

(19)

where sup and inf represent the supremum and infimum, respectively.
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III. EXPERIMENTS AND RESULTS

A. Database

We collected 32 3D transrectal ultrasound image volumes from 16 clinical patients who 

underwent prostate biopsy. Each patient had two image volumes acquired at different times. 

An ultrasound system and an end-firing, 5–9 MHz, TRUS transducer were used for the 

image acquisition. The voxel size of the image was 0.19 mm × 0.19 mm × 0.19 mm, and the 

size of the images was 448×448×350 voxels. The prostate was manually segmented on each 

image slice by an experienced clinic radiologist in order to produce the gold standard for 

evaluation. We conducted leave-one-out style, cross-validation experiments for the prostate 

segmentation method. We take each of 32 TRUS image volumes as the testing image to be 

segmented in turn, and the remaining 31 ones as the training samples.

B. Parameter Tuning

The two parameters of our approach, which are described in Section II, were set up through 

experiments. The first parameter is the size of the dilation and erosion processing. As a too 

large or small value of the size leads to errors in the prostate location, we tested 20 integers 

from 1 to 20 pixels and selected the one with the best performance. For each tested number, 

we just used the context information to choose the fore- and background seed points and run 

the random walk algorithm for the prostate segmentation. As shown in Fig. 6, the results 

demonstrated that the optimal size is 4 pixels, i.e., 0.76 mm. This number is used in all of 

the following experiments.

The second parameter is the parameter Va in (12), which is a coefficient to make a tradeoff 

between the impacts of the context information and the classification information. We 

performed our method with 20, different Va from −20 to −1 and show these results in Fig. 7. 

From Fig. 7, we choose −6 for Va because it gives the best performance.

C. Qualitative Evaluation Results

The segmentation results from three prostate volumes are shown in Fig. 8. The solid blue 

curves are the manual segmentation performed by the radiologist and were used as the gold 

standard. The dash red curves are segmented by the proposed method. We show the 2D 

segmented results in the base, mid-gland, and apex regions. The segmented boundaries are 

close to the gold standard and demonstrate the effectiveness of the segmentation method.

D. Quantitative Evaluation Results

Table I shows the mean and standard deviation of the segmented results as measured by 

seven metrics for 32 volumes. Each volume is divided into three sub-regions that include the 

apex, mid-gland, and the base regions. The three sub-regions contain the 30%, 40%, and 

30% slices of the whole prostate, respectively. The segmentation method achieved a DSC of 

91.0±1.6% for the whole gland, and thus indicating a high segmentation accuracy and a 

small standard deviation. For the 32 volumes, we use the Hausdorff distance to measure the 

maximum distance in mm between the two surfaces of the prostate, and which were 

segmented by our proposed method and by an experienced radiologist. We obtained the 

Hausdorff distance of 8.9±1.4 mm. The results in the apex and base regions are not as 
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positive as those of the mid-gland region because it is difficult to segment the apex and base 

regions. The quantitative evaluation results demonstrate that our method achieved a 

satisfactory segmentation performance.

E. The Effectiveness of the Proposed Method

First we tested the performance of multiple classifiers. To better describe the diversity of the 

prostate, we train multiple classifiers with the help of the clustering method based on 

different shapes and sizes of the prostates. We compare our multiple classifiers with the 

single classifier in order to show our advantage. For our multiple classifiers and a test 

sample, the best classifier is chosen and used to classify the test sample. For the single 

classifier, all of the training samples are used to train a model and the model is then used for 

the classification. We provided the results in Fig. 9 which showed the improvement of the 

segmentation accuracy with our multiple classifiers as compared with one classifier. We 

recorded the Fisher values for the leave-one-out cross validation experiments and choose the 

best k as 6, 6, 5, 6, 7, 6, 5, 6, 6, 7, 6, 6, 6, 6, 6, 6, 5, 7, 8, 5, 5, 7, 5, 6, 5, 5, 5, 7, 6, 7, 6, and 5, 

respectively.

Secondly, we compared the three approaches: intensity only; LBP only; and the combination 

of intensity and LBP, for the training. The classification accuracy is shown in Fig. 10. LBP 

can achieve better classification accuracy than the intensity feature. Our combined method 

achieves the highest accuracy, and the combined feature can best distinguish the prostate and 

non-prostate pixels with the classification.

Thirdly, our method combines the context and classification information in order to 

determine the seed points for the random walk algorithm. In order to demonstrate the 

usefulness of the combination, we compare it using two methods: one only uses the context 

information to determine the seed points for the random walk algorithm (CO-RW); and the 

other one only uses classification information (CL-RW). In our experiments, we segmented 

the prostate for the 32 volumes by using the CO-RW, CL-RW, and our method.

We provide the location of the seed points determined by the CO-RW, CL-RW, and our 

method on one image slice in Fig. 11, where the white points indicate the foreground points 

and the black points indicate the background points, the solid blue contours are the manually 

segmented gold standard, and the dash red contours are our segmented results. Fig. 11 

demonstrates that the object segmented by CO-RW has some location errors and the object 

segmented by CL-RW contains some irrelevant regions, while the object segmented by our 

combined method is closed to the gold standard. Our combined context-classification can 

locate the seed points more accurately.

In addition, we present the segmentation results in Fig. 12. The average DSC using our 

method is 91.0%, and which is better than the CO-RW method of 75.35% or the CL-RW 

method of 80.65%. The results demonstrated that our method performs better than either the 

CO-RW or CL-RW method. Our method combines their advantages and overcomes their 

weaknesses.
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F. Comparison with the Other Prostate Segmentation Methods

We first compared our method with the level set based segmentation method and provided 

the segmentation results in Fig. 13. For initialization of the level set method and our method, 

we asked the user to draw a box to warp the prostate and to draw the prostate and non-

prostate circles, respectively. Then we adopted the level set based segmentation method and 

our random walk based method for the segmentation. The random walk algorithm obtained 

the prostate contour that is close to the gold standard, while the level set method produces 

the segmentation leaks.

We then compared our method with the other segmentation methods.27, 29, 34, 38 The results 

are shown in Table II, where DSC is represented by the mean (standard deviation) and the 

size of the image is represented by the length × width (number of slices). In Table II, our 

method can achieve a mean DSC of 91.0%, which is higher than the 89.7% of the method38, 

90.81% of the method34, and 90.3% of the method29. Although our DSC is slightly lower 

for the whole prostate region compared with the method27, our method has higher DSC for 

the apex region and mid-gland region. Our standard deviation is also the lowest among these 

methods, except for the method34. The standard deviation of the method34 is low because it 

contains only five images. The higher DSC values prove that our method can achieve higher 

and more stable segmentation performance than the compared methods. From the 

perspective of efficiency, our method costs about seven minutes for the segmentation on one 

patient, and which is longer than the other methods. This is because the size of the image to 

be segmented in our database is large and the number of slices is also large. For example, the 

method27 costs four minutes for segmentation, and the size of the image is 136×165 pixels 

and the number of slices for one patient is from seven to 14, while our image is 448×448 

pixels and there are 350 slices required to be segmented for one patient. Not only is the size 

of our image three times larger than the size of the image in the method27, but our slice 

number is also far greater than that in the method27. Although the size of the database image 

and the number of slices in the method29 are the same as that using our method, it needs a 

user to draw two, orthogonal bounding boxes and segment the prostate within the boxes.

G. Robustness of our Method

We demonstrate the robustness of our method in term of user interactions by comparing the 

proposed method with the method.41 We randomly choose five patients and use the 

method41 and our method for segmentation. Our method needs the user to draw the prostate 

circle and non-prostate circle while the method41 needs the user to pick up 12 points, 

including six foreground and six background points, after which the fore- and background 

points are fitted with two, closed B-spline curves for more seed points. For a more fair 

comparison, we select the optimized parameters for the method41 by using segmentation 

experiments in the same manner. To test the robustness, the user draws different circles for 

our method and marks different points for the method41 for ten times, respectively. 

According to the initial points or circles, we use the method41 and our method to segment 

the 3D prostate ten times. The comparison results are shown in Fig. 14. The DSC from our 

method is stable while the one obtained by the method41 varies significantly. This illustrates 

that our method is not affected by the initialization, but that the method41 is sensitive to the 

initial seed points.
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Then we test the robustness of our method compared to the manual segmentations. We 

evaluated our segmented results using another manual segmentation gold standard obtained 

by another radiologist. The segmentation results are shown in Table III. In Table III, we can 

see that we obtain a DSC of 85.4 ± 3.3% between the segmented prostates based on the first 

radiologist and manual segmentation from the second radiologist. And for the three sub-

regions, i.e. apex, mid-gland, and base regions, we still achieve a DSC of 78.7 ± 7.7, 90.2 

± 3.2, and 81.4 ± 6.3, respectively. These good results prove the robustness and effectiveness 

of our method.

IV. DISCUSSION

We describe a semi-automatic segmentation algorithm for the prostate in 3D ultrasound 

images. The method is initialized with the user determining the start and end slices 

containing the prostate and drawing the prostate and non-prostate seed circles on the mid-

gland slice, and which then automatically segments the prostate on other slices by using a 

context-classification based, random walk algorithm.

The advantage of our method is that we involve the random walk algorithm for the 3D 

prostate segmentation and use the combined context-classification information to more 

accurately locate the seed points for improving the segmentation performance. The random 

walk algorithm can formulate the segmentation problem on a graph in order to avoid the 

discretization errors. The algorithm assigns a label to each pixel on the image according to 

its probability of belonging to the object and it can thus avoid the segmentation leakage and 

shrinking bias. By comparing with the level set based segmentation method, we can see that 

the random walk can obtain good segmentation performance. By combining context and 

classification information, the method can more accurately find fore- and background seed 

points. The context information from the morphology mask can not only describe the 

patient-specific characteristics but can also consider the changes between the segmented 

prostate on the adjacent slice. The classification information from the decision tree classifier 

can reflect the population-based prior knowledge. However, it is difficult to achieve good 

segmentation results by using only one of them. By fusing the context and classification 

information together, we can achieve the discriminative information required to determine 

the location of the seed points. With more accurate seed points, the random walk algorithm 

can improve the segmentation result. Experimental results show that the proposed method is 

effective. It outperforms not only the CO-RW and CL-RW methods, but also the other 

prostate segmentation methods27, 29, 34, 38.

The two parameters which are determined by the segmentation experiments do not have a 

significant effect on the segmentation performance. The comparison results of user 

interactions demonstrated that our interaction type is more stable than that of the method41. 

The proposed method takes about seven minutes to segment one prostate volume 

(448×448×350) after the user interaction using MATLAB code in a desktop computer with 

32 GB RAM and 3.40 GHz processor. Our method trades speed for a better segmentation 

performance and fewer user interactions. The method achieved a relatively high and stable 

segmentation accuracy on the clinic images compared with the manual segmentation by 

clinically experienced radiologists. Although the segmentation efficiency is not a design 
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criteria, the proposed method can be accelerated and optimized by reducing the size of an 

image with the use of superpixel and by using parallel processing methods to improve the 

efficiency in the future.

V. CONCLUSION

In this manuscript, we proposed a semi-automatic, context-classification based random walk 

algorithm for prostate segmentation of 3D ultrasound images. The method changes the 

original 3D segmentation problem into a sequence of 2D segmentation sub-problems for a 

fast segmentation. After a user interaction on the mid-gland slice, the algorithm can 

automatically segment the 3D prostate slice by slice. Because a random walk algorithm can 

be sensitive to the location of seed points, it is important to choose these seed points. We 

combine the context information representing the patient-specific characteristics and 

classification information representing the population characteristics to automatically 

acquire the seed points for the random walk algorithm on the other slices except the mid-

gland slice. Therefore, being different from the existing hybrid methods, we combine the 

patient-specific characteristics and population characteristics together to better characterize 

the patient and adopt the random walk algorithm for more accurate segmentation of the 

prostate because it can avoid segmentation leakage and shrinking bias. Experimental results 

show that our method is effective and robust compared to the other methods. The 

segmentation method can be applied in a variety of prostate-related applications including 

ultrasound-guided biopsy, diagnosis, and prostate therapy.
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Fig. 1. 
Flowchart of the context-classification based, random walk algorithm (C-RW).
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Fig. 2. 
Feature extraction using LBP: (a–c) Original images in sagittal, coronal, and transverse 

directions, respectively. (d–f) Their corresponding LBP feature images.
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Fig. 3. 
Flowchart of random walk for segmentation.
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Fig. 4. 
Example for determining the fore- and background points according to the context 

information. (a) The image with the segmented mask on the adjacent slice (solid red line), 

the shrunk mask (dot green line), and the expanded mask (dash blue line). (b) The image 

with the foreground points (green region), and (c) The image with the background points 

(blue region).
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Fig. 5. 
Definition of the Dslice and ABslice for the prostate image slices.
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Fig. 6. 
Segmentation performance with respect to the size of the dilation and erosion. (a) Dice 

similarity coefficient, (b) sensitivity, (c) specificity, (d) detection, (e) false negative rate, and 

(f) overlap error.
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Fig. 7. 
Segmentation performance with respect to the value of parameter Va. (a) Dice similarity 

coefficient, (b) sensitivity, (c) specificity, (d) detection, (e) false negative rate, and (f) overlap 

error.
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Fig. 8. 
Prostate segmentation results of three volumes. The slices are chosen from the base, mid-

gland, and apex regions. The solid blue curves are from the manual segmentation of a 

clinically experienced radiologist, while the dash red curves are from our method.
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Fig. 9. 
Classification accuracy obtained by the training with and without the cluster processing.
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Fig. 10. 
The classification accuracy based on the intensity feature only, LBP feature only, and their 

combined features.
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Fig. 11. 
The fore- and back- ground points obtained by the context-based initialization, 

classification-based initialization, and the combined context-classification based 

initialization, and their corresponding segmentation results, where the white points and the 

black points indicate the fore- and background points, the segmented prostate is the dash red 

line, and the manual segmentation is the solid blue line.
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Fig. 12. 
Performance comparison among three segmentation approaches: the CO-RW; CL-RW; and 

our C-RW for 32 volumes.
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Fig. 13. 
Prostate segmentation of the mid-gland slice using the level set method and our random 

walk algorithm, where the rectangles are drawn manually for the level set method and the 

inner and outer circles are roughly drawn manually for the random walk algorithm. The 

segmented prostate is the dash red line and the manual segmentation is the solid blue line.
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Fig. 14. 
Segmentation comparison measured by DSC for different initialization method: The method 

reported in [41] and our method for the same 5 volumes with 10 times segmentation.
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