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ABSTRACT  

Automatic segmentation of the prostate on CT images has many applications in prostate cancer diagnosis and therapy. 
However, prostate CT image segmentation is challenging because of the low contrast of soft tissue on CT images. In this 
paper, we propose an automatic segmentation method by combining a deep learning method and multi-atlas refinement. 
First, instead of segmenting the whole image, we extract the region of interesting (ROI) to delete irrelevant regions. 
Then, we use the convolutional neural networks (CNN) to learn the deep features for distinguishing the prostate pixels 
from the non-prostate pixels in order to obtain the preliminary segmentation results. CNN can automatically learn the 
deep features adapting to the data, which are different from some handcrafted features. Finally, we select some similar 
atlases to refine the initial segmentation results. The proposed method has been evaluated on a dataset of 92 prostate CT 
images. Experimental results show that our method achieved a Dice similarity coefficient of 86.80% as compared to the 
manual segmentation. The deep learning based method can provide a useful tool for automatic segmentation of the 
prostate on CT images and thus can have a variety of clinical applications. 

Keywords: Prostate, image segmentation, computed tomography (CT), convolutional neural networks (CNN), multi-
atlas segmentation, deep learning, prostate cancer 
 

1. INTRODUCTION  

Prostate cancer is one of the major causes of cancer mortality in American men. It is estimated that there were 180,890 
new cases of prostate cancer in the United States in 2016 [1]. Accurate segmentation of the prostate on CT images has 
many applications in the diagnosis and therapy of this disease. However, manual segmentation is time-consuming and 
subjective to the experience of the physician. Some semi-automatic segmentation methods [2-4] needs the user 
interaction. Automatic segmentation methods for the prostate on CT images have been proposed in recent years [5-10]. 
Some methods [5-8] need the information from the same patient for segmentation. The method in [9] used the shape of 
the prostate from one patient to guide the segmentation. As reported in [10], the distribution of the intensity histograms 
inside and outside the organ contours is important for prostate segmentation. The afore-mentioned methods use the 
handcrafted features for segmentation. However, it can be difficult to extract effective features. Deep learning based 
methods play an increasing role in image classification, natural language processing, and medical image analysis. For 
example, Guo et al. [11] proposed prostate MR segmentation method using deep features and sparse patch matching. 
They learned the latent feature representation from prostate MR images using the stacked sparse auto-encoder. 

In this paper, we propose a deep learning based method to segment the prostate on CT images. We adopt the 
convolutional neural networks (CNN) to learn the deep feature and classify the pixels into the prostate and non-prostate 
for preliminary segmentation of the gland. We then use a multi-atlas method to segmentation the prostate. 
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2. METHOD 

Our automatic segmentation method for the prostate on CT images contains three parts: extraction of regions of interest 
(ROI), CNN based prostate segmentation, and multi-atlas label fusion. Figure 1 shows the overview of the proposed 
method.  

 
Figure 1. An overview of the proposed deep learning based segmentation method for 3D prostate CT images. 

2.1 ROI extraction 

Since the prostate is a small region of interest (ROI) on the pelvic CT image, the numbers of prostate and non-prostate 
pixels are not balanced. In order to extract the ROI, we use three processing steps. 1) We delete the bed of the scanner on 
the CT images. Because the bed on each slice locates in an approximately same position on the CT images, we overlap 
all the 2D slices to extract the bed. 2) After removing the bed from the images, we use a threshold to detect the pelvic 
bone on each slice. 3) We extract the ROI that includes the prostate region. The size of the extracted ROI is 
161×161×27. 

2.2 Patch extraction  

For each pixel, we use a patch of 32×32 pixels centered at the pixel for the representation. Since a too big or too small 
size of the patch leads to adding noise or losing information, we choose 32×32 as the batch size.  
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2.3 CNN based prostate segmentation 

As described in the previous section, it is necessary to learn adaptive features. Thus, we introduce the convolutional 
neural networks (CNN) to learn the feature representation of each block and classify them into the prostate or non-
prostate pixels for the segmentation. CNN is a type of feed-forward artificial neural network [12]. It can achieve a good 
performance by analyzing the stationarity of statistics and locality of pixel dependencies.  

We construct a 2D CNN for the pixel classification. The 2D CNN consists of three consecutive convolutional layers 
and mean-pooling layers (Figure 1). The input is a 32×32 patch of ROI extracted from the training images. The first, 
second, and third convolutional layer consists of 6 kernels with the size of 5×5×1, 12 kernels with the size of 3×3×6, and 
24 kernels with the size of 3×3×12, respectively. As shown in Figure 1, the outputs of the three layers are 6 blocks of 
28×28 (denoted as 6@28×28), 12 blocks of 12×12, and 24 blocks of 4×4 for the three layers, respectively. The mean-
pooling layers are followed by the convolutional layers. It can output the mean values in non-overlapping windows with 
the size of 2×2 and stride of 2, thus reduces the size of patches by half. The last layer is a fully connected layer with 96 
neurons and the output has two neurons, meaning the category: prostate and non-prostate.  

2.4 Multi-atlas label fusion 

We combine multiple atlases with the preliminary segmentation result from the CNN to generate the final segmentation 
result. Although the prostates from different patients have different appearances or sizes, their anatomical structure is 
similar and can be used to guide the segmentation. To select similar atlases, we cluster all the atlases into k groups 
according to the features of the atlases, including the size feature and shape feature [13]. We adaptively determine the 
value k according to the minimum distance within the group. The distance within the group DG(k) is computed by  

1 1( ) ( )ik N
ij ii jDG k F centroid= == −∑ ∑                                                       (1)  

where Fij is the features of the j-th atlas which is clustered into the i-th group, Ni is the number of atlases in the i-th group, 
and centroidi is the centroid of the i-th group. The optimal number of groups, k∗, can be chosen according to the 
minimum distance within the group  

arg  min  ( )k DG k∗ = .                                                                            (2)  

Based on the clustered atlases, we can find the similar group by clustering the preliminary segmentation result. We 
rigidly align the atlases in the similar group with the preliminary segmented prostate and conduct the majority voting for 
each pixel to achieve the final segmentation result.  

2.5 Evaluation criterion 

We use the Dice similarity coefficient (DSC) to evaluate the segmentation performance [15-18]. DSC is the relative 
volume overlap between the binary masks from our method and the manual segmentation by radiologists. The DSC can 
be computed as: 

2
( ) ( )

TPDSC
FP TP TP FN

×
=

+ + +
,                                                               (3) 

where TP, TN, FP, FN is the number of true positives, true negatives, false positives and false negatives, respectively. If 
a positive example for a prostate pixel can be recognized correctly, we call it “true positive”. If a prostate pixel is 
classified as a non-prostate pixel incorrectly, we call it “false negative”. The meanings of “true negative” and “false 
positive” are defined similarly. 

3. EXPERIMENTS 

3.1 Databases 

The segmentation method was tested in CT image volumes from 92 patients. The slice thickness is 4.25 mm and the size 
of the images is 512×512×27 voxels. The in-plane resolution is 0.977 × 0.977 mm2. The prostate was manually 
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segmented by an experienced radiologist to produce the gold standard for segmentation evaluation. The set of the 
volumes from 92 patients is nearly evenly divided into five disjoint subsets. We conducted five-fold cross validation 
experiments for the segmentation. Specifically, we take each of the five subsets as the testing dataset, randomly select 
one subset as the validation set for parameter setting, and the three remaining subsets are the training set.  

3.2 Result for the ROI extraction  

Figure 2 shows the ROI extraction process. The images in the first column are the 2D original images. The images in the 
second and third columns show the detected bed region and bones. The images in the last column show the ROI in the 
2D slices where the red rectangles are the prostate ROIs. We extracted the region inside the red box as our ROI and the 
blue curves are the prostate. It shows our ROIs are large enough to cover the whole prostate region.  

Original image Bed detection Bone detection ROI extraction 

    

    

    

    

(a) (b) (c) (d) 

Figure 2. The extraction processing for the prostate region of interest (ROI). (a) The original CT images, (b) The detected 
bed, (c) The detected bones, and (d) The extracted ROIs, where the red rectangle boxes are the extracted ROIs and the blue 
contours are the prostate region segmented by the radiologist. 

3.3 Parameters setting  

There are two groups of parameter sets which are determined by experiments. One is the hyperparameters for CNN, and 
the other is the number k for the atlases clustering.  

3.3.1 The parameters for CNN training 

The CNN framework is implemented using the method in [14]. We test the classification performance of CNN on the 
validation data set and determine three parameters for the CNN training, which include the learning rate (alpha), the 
batch size, and the number of epochs. We test the alpha from 0.1 to 1 with a step size of 0.1, the batch size from 10 to 
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100 with a step size of 10, and the epochs with 1 and values from 10 to 60 with step size of 10. When we test the 
performance influenced by one parameter on the validation set, we keep the other parameters stable. For example, if we 
test the influence of the alpha on the segmentation performance, we fix the epochs as 1 and the batch size as 50. In the 
same way, we fix the alpha as 1 and epochs as 1 to test the influence of the batch size, and we fix alpha as 1 and the 
batch size as 50 to test the influence of epochs. The effects of different parameters on the segmentation are shown in 
Figure 3-5. Finally, we select the best parameter with the highest DSC for the three parameters (alpha, batch size, 
epochs). They are (0.8, 10, 10), (0.6, 70, 40), (0.1, 100, 50), (0.6, 30, 40), and (0.5, 100, 20) for the five-fold validation, 
respectively. We then used them in all the following experiments. 
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Figure 3. Five-fold segmentation validation with different alphas (from 0.1 to 1) with a fixed batch size of 50 and a fixed 
epoch of 1. 
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Figure 4. Five-fold segmentation validation with different batch sizes (from 10 to 100) with a fixed alpha of 1 and a fixed 

epoch of 1. 
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Figure 5. Five-fold segmentation validation with different epochs (from 1 to 60) with a fixed alpha of 1 and a fixed batch 

size of 50. 

3.3.2 The parameters for the atlas clustering  

To select the similar atlases for guiding the segmentation, we cluster the atlases into k groups, we determine the 
parameter k according to Eq. (2). We record the distance within groups under different k in the five-fold validation, as 
shown in Figure 6. We choose the value k in the five-fold validation as 15, 21, 21, 21, and 19 because they provide the 
smallest distances.  
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Figure 6. The distance in the five-fold segmentation validation with different k for the atlas clustering. 
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3.4 Qualitative results 

Figure 7 shows the segmentation results of four patients. The contours by the automatic segmentation are close to those 
manually segmented by the radiologist, indicating the automatic method performs well. 

    
(a)                                  (b)                                   (c)                                   (d) 

Figure 7. Qualitative evaluation of the prostate segmentation on four CT slices of different patients. The red curves are the 
prostate manually segmented by the radiologist, while the blue curves are the segmentation results by our automatic method. 

3.5 Quantitative results  

Table 1 shows the quantitative evaluation results from the five-fold validation with the 92 CT image volumes. We 
divided each volume into three sub-regions: the apex, middle, base regions, which contain 30%, 40%, and 30% slices of 
the prostate in the transverse direction, respectively. We measure the DSC for the whole volume and the three sub-
regions. The DSC is 86.80% for the whole volume. The minimum DSCs are 79.91% and 75.26% for the apex and base 
regions, respectively. Note that it is usually difficult to segment the apex and base of the prostate.  

Table. 1. Segmentation performance for the whole gland and  
the three sub-regions (apex, mid-gland, and base) in 92 patients. 

Five-fold 
DSC (%) 

whole apex middle base 

1 82.68±6.15 79.91±13.18 92.11±4.75 75.26±13.04 

2 86.80±6.40 83.59±13.17 93.49±5.76 84.16±7.96 

3 85.14±8.76 83.53±12.20 89.95±11.87 81.48±10.12 

4 84.27±5.70 86.54±7.23 87.74±8.84 76.09±7.84 

5 82.06±5.38 80.78±6.81 89.53±6.12 78.73±9.99 

3.6 Effectiveness of the proposed method 

In this paper, we adopt a two-stage method for the segmentation. Specifically, we use the CNN to learn the deep feature 
to obtain the preliminary segmentation result, and then use the multi-atlases to refine it for the final segmented prostate. 
In order to highlight the advantages of our method, we compare our method with the method involving only the deep 
learning algorithm and the multi-atlas algorithm, respectively. We use the M_DL and M_ATLASES to represent them, 
respectively. We tested the two methods on the same database and the results are shown in Table 2. By comparing the 
results in Tables 1 and 2, our method can take the advantage of both deep learning and multi-atlases and achieve the best 
segmentation performance, not only for the whole volume, but also for the apex, middle, base regions.  

3.7 Comparison with the other methods 

To prove the effectiveness of the deep learning method, we compare our method with two other methods [3, 8]. We 
changed the method in [3] to become automatic segmentation by removing the interaction part. The method [3] extracted 
the handcrafted features that include the CT histogram feature, multi-scale rotation invariant LBP feature, GLCM feature, 
HOG feature, and Haar-like feature. The method in [8] used a different database of 40 CT images. The mean DSCs are 
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0.759, 0.82, and 0.842 for Method [3], Method [8], and our deep learning method, respectively. The deep feature learned 
by CNN is better than the handcrafted features as used in [3]. The deep learning based segmentation method is more 
effective than other two segmentation methods.  
 

Table. 2. Segmentation performance of the two methods (M_DL and M_ATALAES)  
for the whole gland and the three sub-regions (apex, mid-gland, and base) in 92 patients. 

Five-fold 
DSC(M_DL) DSC(M_ATLASES) 

Whole Apex Middle Base Whole Apex Middle Base 

1 78.6±7.4 71.9±14.7 92.8±5.4 71.7±13.0 72.9±8.2 70.1±10.0 84.5±8.0 67.8±12.7 
2 81.1±6.5 76.1±15.4 94.3±4.9 76.1±7.5 72.4±9.5 69.5±11.3 85.1±7.9 66.3±13.0 
3 74.6±12.7 67.9±20. 8 84.2±16.9 70.7±15.5 69.2±8.1 67.4±9.8 78.1±10.5 64.4±12.1 
4 77.7±8.9 72.8±12.7 87.3±13.8 76.4±6.4 67.3±7.3 64.1±7.3 77.0±10.4 62.5±10.9 
5 79.9±5.7 76.1±6.7 92.7±7.9 76.3±6.4 69.2±7.0 62.4±12.2 82.7±4.9 66.5±9.1 

4. CONCLUSIONS 

In this paper, an automatic segmentation method has been proposed to segment the prostate on CT images. We used 
convolutional neural networks to learn the characteristic of the prostate and non-prostate pixels to obtain the preliminary 
segmented prostate. By selecting the similar atlases, we refine the segmentation and obtain the final contour of the 
prostate. The two-stage segmentation method is more effective as compared to the methods only involving the deep 
learning algorithm or multi-atlas label fusion. The proposed method also performs better than the method that only uses 
handcrafted feature. The automatic segmentation method can be applied to various applications in prostate cancer 
diagnosis and therapy. 
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