


Methods: The prostate gland usually has a globular shape with a smoothly curved surface, and its 

shape could be accurately modeled or reconstructed having a limited number of well-distributed 

surface points. In a training data set, using the prostate gland centroid point as the origin of a 

coordination system, we defined an inter-subject correspondence between the prostate surface 

points based on the spherical coordinates. We applied this correspondence to generate a point 

distribution model for prostate shape using principal component analysis and to study the local 

texture difference between prostate and non-prostate tissue close to the different prostate surface 

sub-regions. We used the learned shape and texture characteristics of the prostate in CT images 

and then combined them with user inputs to segment a new image. We trained our segmentation 

algorithm using 23 CT images and tested the algorithm on two sets of 10 non-brachytherapy and 

37 post-low dose rate brachytherapy CT images. We used a set of error metrics to evaluate the 

segmentation results using two experts’ manual reference segmentations.

Results: For both non-brachytherapy and post-brachytherapy image sets, the average measured 

Dice similarity coefficient (DSC) was 88% and the average mean absolute distance (MAD) was 

1.9 mm. The average measured differences between the two experts on both datasets were 92% 

(DSC) and 1.1 mm (MAD).

Conclusions: The proposed, semiautomatic segmentation algorithm showed a fast, robust, and 

accurate performance for 3D prostate segmentation of CT images, specifically when no previous, 

intra-patient information, i.e. previously segmented images, was available. The accuracy of the 

algorithm is comparable to the best performance results reported in the literature and approaches 

the inter-expert variability observed in manual segmentation.

Keywords

Computer tomography (CT); prostate; segmentation; texture features

1. Introduction

Prostate cancer (PCa) is the leading cancer diagnosed among males in the United States1. It 

accounted for more than 26,000 cancer deaths in 20161. Currently, image-guided radiation 

therapy is one of the primary treatment methods for patients with localized PCa2, 3. PCa 

radiation therapy planning is performed with the prostate border delineated on computed 

tomography (CT) images4. However, due to the low soft-tissue contrast between the prostate 

and surrounding tissues, manual contouring of the prostate in CT images is time-consuming5 

and is subject to high intraobserver and interobserver variability6–9. Therefore, computer-

assisted segmentation algorithms are being investigated and developed to perform prostate 

contouring more quickly and more reproducibly compared to manual segmentation.

Information regarding several automatic and semiautomatic, computer-assisted methods 

have been published in the literature regarding three-dimensional (3D) segmentation of the 

prostate on CT images. The majority of these studies were regarding learning-based 

segmentation techniques. Feng et al.10 proposed an automatic algorithm for CT prostate 

segmentation, based on shape and appearance modeling using population- and patient-

specific statistics. Their method is more useful for radiotherapy treatment CT images when a 

series of previously segmented treatment images from the same patient is available. Liao et 
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al.11 presented a multi-atlas sparse label propagation framework to estimate the prostate 

likelihood of image voxels using patch-based representation in a discriminative feature space 

for semiautomatic prostate segmentation in treatment CT images. In their method, manual 

segmentation labels of the planning and the first two treatment CT images were needed. 

After each treatment image segmentation, they used an online update mechanism with 

potential offline manual adjustment of the segmentation label to add the newly segmented 

image to the training set. Shi et al.12, 13 presented a semiautomatic prostate segmentation 

method that first estimated the prostate-likelihood map slice-by-slice, and then merged the 

2D maps to generate a 3D prostate-likelihood map. Finally, the segmentation labels of the 

planning and the previous treatment images of the same test patient were rigidly aligned to 

the prostate-likelihood map and a majority vote was used to prepare the final segmentation 

label. Shi at al.14 also presented another segmentation algorithm in which they improved the 

segmentation performance by incorporating manually assigned prostate and non-prostate 

labels for a subset of test image voxels for training. Shao et al.15 presented a boundary 

voting technique for automatic prostate segmentation in CT images using a global regression 

forest for prostate boundary detection followed by a deformable prostate segmentation. They 

also presented a similar automatic boundary detection algorithm for segmentation of the 

prostate and rectum in radiotherapy planning CT images16. They estimated the prostate and 

rectum borders by automatic landmark detection using regression forest followed by shape 

modeling. Ma et al.17 presented a semiautomatic, learning-based segmentation method that 

was trained based on a combination of population and patient-specific data. They used 

manual segmentation of three, 2D slices of the target image as the patient-specific data. Ma 

et al. also presented an automatic, deep learning-based prostate CT segmentation 

algorithm18. They used the convolutional neural networks to determine the deep features of 

the discriminate prostate and non-prostate voxels. They refined the neural network output by 

applying a multi-atlas label fusion. Table V compares the segmentation accuracy of the 

previously presented algorithms mentioned above.

In the previously presented learning-based methods a training dataset consisting of manually 

segmented images was used to study a set of different characteristics of the prostate in the 

image. Then, during segmentation, the learned information was used to delineate the 

prostate border on an unseen test image set. In some of these methods the training sets 

consisted of CT images from other patients only, and in some others the previously 

segmented treatment CT images from the same target patient were also included in the 

training set and that helps to have a more accurate computer-assisted segmentation. 

However, it challenges the segmentation performance where no previously acquired CT 

images are available, e.g. for radiotherapy planning CT image segmentation. Moreover, 

manual segmentation of one or more CT images from the same patient should be available 

as a prerequisite for segmentation of the next treatment image. The performance of all the 

mentioned algorithms were evaluated against one set of manual reference segmentation. 

However, due to high interobserver variability in manual segmentation of the prostate in CT 

images, the measured error metric values are dependent on the selected manual reference 

segmentation label and changing the reference could change the evaluation results. 

Therefore, it is useful for deeper understanding of the algorithm performance to take 

interobserver variability into account for evaluation.
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In this manuscript, we present a semiautomatic algorithm for 3D prostate segmentation on 

CT images, based on learned prostate shape variability and local image texture near the 

prostate border. The proposed learning-based method does not need to be trained on 

previously acquired and/or manually segmented images from the target patient. We use the 

prostate gland centroid point as the origin of the coordination system and define an inter-

patient correspondence between prostate surface points based on the spherical coordinates of 

the points. During training, we apply this correspondence to generate two point distribution 

models (PDM) for prostate shape using principal component analysis, i.e. a low-density 

(LD) model with 86 surface points and a high-density (HD) model with 2056 surface points. 

To study the local image texture close to the prostate border, we train our algorithm on a 

number of rays emanating from the centroid, separately. For all the image voxels on a ray, 

inside and outside the prostate gland, we measure a set of local texture features using a cubic 

image patch centered at the voxel. For all the rays across the training set in the 

corresponding direction, we train a classifier using the local texture features to identify 

prostate versus non-prostate voxels. The segmentation algorithm is initiated with a bounding 

box for the gland and a number of manually selected landmark points on the prostate 

surface. The algorithm searches for a set of prostate border points in the 3D space by 

classifying the points close to the prostate border on a number of rays casted from the 

centroid of the gland. Then 3D point distribution models are used to regularize the 

segmentation and to reconstruct the 3D surface from the border points. We evaluate the 

segmentation algorithm against two, expert reference segmentations, and to capture different 

types of error, we use a set of error metrics to measure surface distances, regional overlap 

errors, and volume differences. We also evaluate the algorithm performance on post-low 

dose rate (LDR) brachytherapy CT images. The main contributions of this work include: (i) 

A new semi-automatic prostate segmentation algorithm was proposed and implemented for 

CT images, which does not use the previous images of the same patient, i.e., it is 

independent to the planning and/or previous treatment images of the same patient. (ii) A 

local texture classification approach was developed to estimate the prostate border and to 

avoid negative effects of image texture distortion caused by necrotic tissue, tumors, or LDR 

brachytherapy seeds. (iii) A new shape modeling was developed for the prostate, which is 

based on a smooth globular shape of the gland. (iv) A comprehensive validation approach 

was used to evaluate the performance of the segmentation technique by capturing different 

performance aspects of importance to the potentially intended application of the algorithm.

2. Materials and Methods

2.A. Materials

Our CT image dataset contained 70, 3D abdominal CT scans from 70 patients. Thirty-seven 

of the images were acquired from post-LDR brachytherapy patients. The size of each image 

was 512 × 512 × 27 voxels with the voxel sizes of 0.977 × 0.977 × 4.25 mm. For each image 

two segmentation labels manually drawn by two experienced radiologists were available.

2.B. Semiautomatic Segmentation

The proposed semiautomatic segmentation algorithm consists of two main parts, i.e. training 

and segmentation. Figure 1 shows the schematic block diagram of the algorithm. The 
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training and segmentation components are described in detail in sections 2.B.1 and 2.B.2, 

respectively.

2.B.1. Training—During training, we use the training image set to extract a set of local 

texture features within each sector of the spherical space. The most discriminative features 

are then selected to train a classifier. We also use the manual segmentation labels of the 

training images to build an LD and an HD PDM for prostate shape. These shape models are 

used for shape regularization and reconstruction during segmentation. Each of the training 

blocks illustrated in Figure 1 is described in detail below.

2.B.1.a. Preprocessing:

Anteroposterior symmetry axis alignment: We rotated all of the training images and their 

manual reference segmentation labels about their inferior-superior axis in order to align the 

anteroposterior symmetry axes of the patients parallel to the anteroposterior axes of the 

images. To automatically measure a patient’s anteroposterior symmetry axis angle in an 

image, we first roughly segmented the bones in the 3D image using a thresholding 

segmentation method (threshold level = 155) and kept the two largest segmented objects 

associated with the left and right hip bones and removed all of the other smaller objects 

(Figure 2a and b). We then measured the centroid of the bones to roughly estimate the 

prostate location (Figure 2b) and cropped the images along the x- and y-axes about the 

centroid so as to limit the image field of view. We selected the field of view large enough 

(121 pixels × 201 pixels) to ensure accommodating the prostate and its surrounding tissue 

(Figure 2c). For each two-dimensional (2D) axial image slice, we flipped the slice about its 

anteroposterior axis (Figure 2e) and aligned the original slice to the flipped one using a 2D 

rigid image registration (Figure 2f). We used gradient descent optimizer and mean square 

error (MSE) metric to run the image registration. After registration, we measured the 

rotation angles of all the image slices and used their median after removing outliers divided 

by two as the patient’s anteroposterior symmetry axis angle. Figure 2 shows the different 

steps of the alignment process.

Hounsfield unit range adjustment: The Hounsfield unit (HU) of prostate and its adjacent 

soft tissues are above −100 and below 155. Therefore, in order to reduce the inconsistency in 

air cavities and bones, we truncated the HU dynamic range of the images and HU values of 

−100 and 155 were respectively assigned to the voxels with HU values below −100 and 

above 155. To choose these HU threshold levels, we observed the HU range for prostate 

voxels across the training images. The HU values after removing the 0.1% outliers varied 

from −85 to 151. We chose −100 to 155 to limit the dynamic range to 256 (eight bit) levels.

Median filtering: To reduce the image noise we applied a 2D median filter as an edge-

preserving, low-pass filter to each 2D axial slice. However, image filtering could disrupt the 

image pattern. Therefore to preserve the image texture while reducing the image noise, we 

applied the filter with a 3×3 pixel window size which is the smallest size for median 

filtering.
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Image resize: The images and their manual segmentation labels were up-sampled along 

inferior-superior axes using nearest neighbor interpolation to make the voxels isotropic. This 

image resampling made it easier to search in 3D space and select cubic image patches.

2.B.1.b. Shape modeling

Low-density point distribution model: To select a set of landmarks on the prostate surface 

and define a correspondence between the landmarks across the training set, we cast N1 = 86 

equally spaced rays in 3D space, emanating from the centroid of the prostate gland and 

found the contact points between the rays and the prostate surface yielding a set of 86 

landmarks. Using the centroid point as the origin of a sphere coordinate system, we defined 

all the landmarks with the same elevation and azimuth angles across the training set 

corresponding to each other. For modeling the prostate shape we defined each shape with 

this cloud of 86 surface points and the centroid point, yielding 87 points in total. The shapes 

were then aligned (translating, rotating and scaling transforms) using generalized 3D 

Procrustes analysis19 and the mean square distance between the points as the error metric.

High-density point distribution model: We applied the similar process used for LD PDM to 

build an HD PDM with N2 = 2056 equally spaced casted rays. For HD PDM each shape was 

defined by 2057 points (2056 surface and one centroid points). To build the model the 

shapes were aligned (translating, rotating and scaling transforms) using generalized 3D 

Procrustes analysis and the mean square distance between the points as the error metric.

2.B.1.c. Feature selection

Local feature extraction: For each of the 86 rays (Rn, n = 1, 2, 3, …, 86) emanating from 

the prostate centroid (xc, yc, zc) we selected a set of points (pn) on the ray within a specific 

range around the prostate border point:

pn = (x, y, z) rmin < r < rmax, θ = θn, φ = φn , (1)

where r, θ, and φ are, respectively, radial, elevation and azimuth coordinates of point (x, y, z) 

in a spherical coordinate system [Eq. (2) – (4)]. rmin = rb − d and rmax = rb + d are the radial 

coordinates of the first and the last points on the ray, respectively, where rb is the prostate 

border point on the ray and d is the distance of the first and the last points from the border 

point. To focus on the local image textures near the prostate border, d should be small 

relative to the gland dimensions (in this paper d = 5 mm) θn and φn are elevation and 

azimuth angles of points on the nth ray (Rn), respectively, and have constant values for all 

the points on the ray. Figure 3a illustrates the details.

r = x − xC
2 + y − xc

2 + z − xC
2 (2)
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θ = cos−1 z
r (3)

φ = tan−1 y
x (4)

We extracted all of the texture features within a 3D cubic image patch. For the point (xp, yp, 

zp) on a 3D image, we defined the image patch P of size 

W × W × W = (2D + 1) × (2D + 1) × (2D + 1) centered at the point (Figure 3b) as:

P = 𝒫 xp, yp, zp = {(x, y, z) xp − D < x < xp + D, yp − D < y < yp + D, zp − D < z
< zp+D .

(5)

In this paper we chose fixed value of 5 mm for parameter D to have patches that are small 

relative to the whole prostate gland but large enough to contain 3D image pattern for texture 

analysis.

For each of the cubic patches, we calculated a feature vector of size 1×67 consisting of a set 

of first- and second-order texture features that are listed in Table I. The patches that are 

centered at a point inside the prostate were labeled “prostate” or “one” and those centered at 

a point outside the prostate were labeled “non-prostate” or “zero”. We also measured the 

percentage of the patch volume within the prostate (Lp) for each patch. Lp is the number of 

prostate voxels in a patch divided by the total number of the patch voxels multiplied by 100. 

For a patch that is completely inside the prostate region Lp=100%, for a patch that is 

completely outside the prostat Lp=0, and for patches that are as close to the prostate border 

to have an overlap with both prostate and non-prostate tissues, in which Lp is greater than 

zero and less than 100%.

Ray and feature selection: We collected the feature vectors from all the rays across the 

training images. Then for the values of each feature collected from all the corresponding 

rays, we applied the two-tailed, heteroscedastic t-test26 to compare the values of the feature 

from prostate patches to the values of the same feature from non-prostate patches. In each 

case we tested the null hypothesis that the mean of the features measured from prostate 

patches is the same as the mean of the features measured from non-prostate patches. 

Rejection of the null hypothesis indicates a statistically significant difference between 

prostate and non-prostate means. For each of those features in which the null hypothesis was 

rejected (α=0.01) we extracted two threshold values (T0 and T1);T0 indicating that all of the 

feature values below/above it belong to non-prostate patches and T1 indicates that all the 

feature values above/below it belong to prostate patches (see Figure 4).

We also used Spearman’s rank-order correlation (ρ) to measure the monotonic relationship 

between each of the features and Lp. For each ray, those features with high (ρ > 0.6) and 
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statistically significant (p < 0.001) correlation coefficients were selected for training a 

support vector machine27 (SVM) classifier to classify between the prostate and non-prostate 

patches. Rays with no selected feature were excluded for SVM training; M ≤ N1 is the 

number of selected rays.

2.B.2. Segmentation

2.B.2.a. Preprocessing: We applied a similar preprocessing to that used for the training 

image to the test image and which consisted of Anteroposterior symmetry axis alignment, 

HU range adjustment, median filtering, and image resizing (see section 2.B.1.a).

2.B.2.b. Initialization

Operator inputs: To initialize the segmentation algorithm, a set of inputs from the operator 

are required, including the prostate gland bounds along the right-left (x), anteroposterior (y), 

and inferior-superior (z) axes, as well as a number of points on the prostate surface (anchor 

points) at different sub-regions, i.e. the apex, mid-gland, and base. For this purpose the 

operator approximated a minimum bounding box for the prostate gland that is limited 

inferiorly to the apex-most slice and superiorly to the base-most slice. The box included the 

entire prostate gland. Then for three, equally spaced slices between the defined apex and the 

base slices, the operator selected four anchor points on the prostate border on each slice and 

approximately at four, different sides, i.e. the right, left, anterior, and posterior sides, yielded 

total of 12 anchor points on the whole surface.

Ray casting: We used the centroid of the bounding box as an approximation for the prostate 

gland center and similar to the training part and casted 86, equally spaced rays emanating 

from the center point (Figure 5a).

Initially estimated prostate surface: We used the LD shape model generated during training 

to find a shape that fit within the bounding box and best matched the manually selected 

anchor points. For this purpose, we used the casted rays to determine the 12. corresponding 

points in the PDM to the anchor points. Then we used 3D thin-plate spline (TPS) analysis28 

to non-rigidly warp the mean shape of the model to the 12 anchor points. This helped to 

estimate the missing points between the anchor points. We then aligned the estimated shape 

to the mean shape of the model using 3D Procrustes analysis and extracted representative 

shape parameters from the PDM. We then restricted each parameter to the range of 

− 3λk, 3λk  in which λk is the kth eigenvalue of the shape model (corresponded to kth 

parameter), in order to determine the nearest shape of the model to the points.

2.B.2.c. Local classification

Classifier training: For each of the M selected rays during training, explained in section 

2.B.1.c, we trained a linear kernel SVM algorithm for binary classification between prostate 

and non-prostate image patches, using the selected features for the ray.

Classification: We defined a search range ( ro − dS, ro + dS  ) on each ray around the 

corresponding surface point from the initially estimated shape. r0 is the radius of the surface 
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point and ds is the distance of the first and the last search point on the ray from the surface 

point. We selected a set of image patches centered at the ray points within the defined range 

and measured the feature vectors for each patch. We applied the threshold levels (T0 and T1) 

obtained from training to the corresponding feature values in order to classify the 

corresponding image patches to prostate and non-prostate. We shifted start and stop points of 

the range on the ray if the adjacent points to them were classified by thresholds. This could 

make the range narrower. Then we apply our SVM classifier to the features of the remaining 

unclassified patches to classify them into prostate and non-prostate. We shifted the initial 

surface point to the boundary of prostate and non-prostate points after removing potentially 

singular labels within the range. This process yielded a set of 86 candidate surface points 

(Figure 5b).

2.B.2.d. Shape regularization and surface reconstruction: We replaced the 

corresponding surface points with manually selected anchor points, in case they have shifted 

along the rays. Then we applied the HD PDM to the points to regularize the shape and in 

order have a plausible smooth shape for the prostate and to reconstruct the surface with a 

larger set of points. For that purpose, we first use TPS warping to non-rigidly register the 

2056-point mean shape of the HD model to 86 obtained surface points, using the 86 

corresponding points in the mean shape as the reference points and yielding a 2056-point 

candidate surface shape. We use 3D Procrustes analysis to register the shape to HD PDM 

and we measured the representing model parameters for the shape. We restricted each of the 

parameters, e.g. kth parameter, to the range of − 3λk, 3λk , in which λk is the 

corresponding (kth) eigenvalue. We then replaced the corresponding 12 points with the 

anchor points and also restricted the points to be within the bounding box. Finally, we used a 

scattered data interpolation29 to generate a continuous surface out of the surface point set 

(Figure 5c – e), and resized the obtained label to the original image size so as to have the 

final segmentation results.

2.C. Evaluation

To evaluate our segmentation algorithm we compared the results against an expert 

observer’s manual segmentations as the reference segmentations using a set of different 

types of error metrics explained in this section. We applied our error metrics to the entire 

prostate gland, as well as the inferior-most third (apex region), the superior-most third (base 

region), and the middle third (mid-gland) of the prostate.

2.C.1. Surface disagreement measurements—Mean absolute distance (MAD) 

measures the average disagreement between two surfaces where each surface is defined as a 

set of points. We defined MAD in unilateral and bilateral modes. See reference 30 for more 

details.

Hausdorff distance (HD) measures the maximum of the shortest distance between 

segmentation surface and reference surface. HD is sensitive to the noisy segmentation 

surface.
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2.C.2. Regional overlap measurements—There are several, region-based error 

metrics that measure the overlap between two volumes. Dice similarity coefficient31 (DSC) 

is the most commonly used and sometimes the only region-based error metric reported in the 

literature. However, there are other region-based methods, e.g. recall or sensitivity rate (SR), 

precision rate (PR), and overlap error (OE) that have also been used to evaluate the 

segmentation algorithms and they could explain the error type, e.g. partial overlap, over 

segmentation and under-segmentation, better than DSC by itself. Reporting all the listed 

region-based error metric values for an algorithm might seem redundant, but for comparison 

purposes we applied all of them to our algorithm’s segmentation results. In this manuscript, 

we reported all of the region- based error metrics in percentages. See reference 30 and 17 for 

more details.

We also reported the signed volume difference (ΔV) between the algorithm segmentation 

and the reference, defined as:

ΔV Vs, Vre f = Vs − Vre f , (6)

where,Vs and Vref are algorithm segmentation and reference segmentation volumes, 

respectively. ΔV is reported in cm3 and as a percent in this manuscript. To measure the 

percentage of the ΔV, it is divided by the reference volume:

ΔV Vs, Vre f =
Vs − Vre f

Vre f
× 100. (7)

For comparison of two manual references, we reported the absolute value of the volume 

difference and considered the average of the volumes as the reference volume:

ΔV Vre f 1, Vre f 2 = Vre f 1 − Vre f 2 ,  and  (8)

ΔV Vre f 1, Vre f 2 =
Vre f 1 − Vre f 2

1
2 Vre f 1 + Vre f 2

× 100, (9)

where, Vref1 and Vref are manual reference segmentations obtained from two experts.

3. Results

1.A. Implementation details

We implemented the proposed segmentation algorithm using MATLAB R2017a (version 

9.2.0) on a 64-bit Windows 7 desktop with a 3.0 GHz Intel Xeon processor and with 64 GB 

memory. To speed up the algorithm execution, we developed a parallel implementation of 

Shahedi et al. Page 10

Med Phys. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the algorithm using the MATLAB parallel computing toolbox and ran the code on 12 CPU 

cores.

To avoid interference of the brachytherapy seeds pattern on algorithm training, we trained 

our algorithm using non-brachytherapy images only. We used one set of the manual 

segmentation (reference #1) for training. We randomly selected 70% of our non-

brachytherapy images, i.e. 23 images, for training the algorithm. The remaining 10 images 

were used for testing the algorithm. We used all of the 37 post-LDR brachytherapy images 

only for testing the algorithm.

For anteroposterior symmetry axis alignment during training, we selected HU of 155 as the 

threshold level for rough segmentation of bones. We cropped the images about the centroid 

to make a 121 pixels (along the x-axis) by 201 pixels (along the y-axis) 2D slices. We used 

the same image cropping for anteroposterior symmetry axis alignment during segmentation. 

We considered all of the rotation angles (αi,T, i = 1, 2, 3, … , number of axial slices) greater 

than 18 degrees as outliers. We set d to 5 mm and D to 5 mm (W = 2D + 1 = 11 mm).

During segmentation we used the same patch size used during training (11 × 11 × 11 mm) 

and ds was initially set to 7 mm.

1.B. Interobserver variability in manual segmentation

We compared our two sets of manual segmentation labels using our segmentation error 

metrics to measure the interobserver variation in expert prostate border delineation. Table II 

shows the result. The mean ± standard deviation of the prostate gland volume based on the 

first and the second manual segmentations were 30.1 ± 12.6 cm3 and 28.0 ± 10.0 cm3, 

respectively.

1.C. Segmentation algorithm accuracy and computation time

1.A.1. Single operator, single reference test on the non-brachytherapy test 
dataset—We applied the proposed segmentation algorithm to 10 non-brachytherapy test 

images using reference segmentation #1 for initializing the algorithm and evaluating the 

results. We defined the bounding box based on the reference label and selected 12 anchor 

points on the label surface, as described in 2.B.2.b. Table III shows the quantitative accuracy 

of the algorithm based on the error metrics. We conducted a one-tailed t-test between values 

of Table III and the corresponding metric values in Table II. The null hypotheses were 

defined regarding the relative metric values, and the values in bold show where the null 

hypotheses were rejected with α = 0.05. Figure 6 and Figure 7 illustrate the non-

brachytherapy image segmentation results qualitatively in 2D and 3D, respectively. The 

average measured segmentation computation time was 22 ± 2 s. per 3D image.

To show the effect of 12 anchor points on the performance of the algorithm, we also run the 

algorithm without the anchor points. Table IV shows the results. We conducted a one-tailed 

t-test between the metric values in the table to the corresponding metric values in Table III. 

The null hypotheses were defined regarding the relative metric values and the values in bold 

in Table IV show where the null hypotheses were rejected with α = 0.05.
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We compared the algorithm performance to some of the most recent segmentation 

algorithms presented in the literature in Table V using our error metric values where 

applicable. In those studies in which MAD was used as an error metric, but the mode of 

MAD calculation was not mentioned, we indicate the MAD values with an asterisk sign. We 

conducted on-tailed t-tests to compare our results with those of previous work where 

applicable. In these tests the null hypotheses were defined regarding the relative 

performance of the methods. The values in bold in Table V show where the null hypotheses 

were rejected with α = 0.05.

1.A.2. Two operators, two references test on the non-brachytherapy test 
dataset—To investigate the effect of using different operator on the algorithm performance, 

we applied the algorithm with the same configuration applied in 3.C.1 and used reference 

segmentation #2 for algorithm initialization. We evaluated the segmentation results by 

comparing the segmentation labels against reference segmentation #2 as the expected 

results. Figure 8 compares these results and the segmentation results obtained in 3.C.1 to the 

observed difference between two references for the 10 non-brachytherapy images. Box plots 

of Figure 8 summarize the comparison between the three groups in terms of any of the three 

metrics. We conducted the one-way ANOVA test followed by pairwise t-tests with the null 

hypothesis that the average of each metric for the three groups are the same. The results of 

the post ANOVA test are indicated in Figure 8 where ANOVA detected a statistically 

significant difference (α = 0.05).

1.A.3. Single operator, single reference test on the post-LDR brachytherapy 
test dataset—Table VI shows the measured segmentation error of the proposed algorithm 

for 37 post-LDR brachytherapy images. The algorithm was trained using the same 23 non-

brachytherapy training images in section 3.C.1. The average measured computation time 

was 21± 1 s. per 3D image. We conducted one-tailed t-tests between each of the metric 

values in this experiment and the metric values obtained on non-brachytherapy (Table III). In 

these tests the null hypotheses were defined regarding the relative performance of the 

algorithm with different test data sets. The values in bold show where the null hypotheses 

were rejected with α = 0.05.

1.A.4. Operator interaction time—To record the required operator interaction time for 

algorithm initialization, we asked two operators (a research scholar and an MD-PhD 

graduate student both with experience in reading prostate CT images) to select the bounding 

box and the anchor points on all the non-brachytherapy and post-LDR brachytherapy test 

images. The average recorded time for selecting bounding box were 41±9 s. (34±9 s. for 

non-brachytherapy test images and 42±8 s. for post-LDR brachytherapy test images) and 

40±14 s. (53±15 s. for non-brachytherapy test images and 37±12 s. for post-LDR 

brachytherapy test images) for the first and the second operators, respectively. The average 

recorded time for selecting 12 anchor points were 18±3 s. (18±1 s. for non-brachytherapy 

test images and 18±3 s. for post-LDR brachytherapy test images) and 16±2 s. (14±2 s. for 

non-brachytherapy test images and 16±2 s. for post-LDR brachytherapy test images) for the 

first and the second operators, respectively. The average total operator interaction time 

(selecting bounding box and 12 anchor points) were 59±10 s. (53±9 s. for non-
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brachytherapy test images and 61±9 s. for post-LDR brachytherapy test images) and 56±14 

s. (67±14 s. for non-brachytherapy test images and 53±12 s. for post-LDR brachytherapy 

test images) for the first and the second operators, respectively.

4. Discussion

4.A. Interobserver variability in manual segmentation

Pairwise comparison of our two, manual reference segmentations (Table II) shows high 

interobserver variation in manual segmentation of the prostate in CT images. For example, 

we observed that the measured disagreement between the experts for the whole prostate 

gland was ranging from 72% to 97% in terms of DSC, and from 0.4 mm to 3.3 mm in terms 

of MAD. This disagreement is slightly lower in the mid-gland region and higher in the base 

and apex regions, and we did not observe a meaningful difference between the base and the 

apex in terms of manual segmentation difficulty. This variation in manual segmentation 

between expert observers makes it challenging to evaluate the segmentation algorithm using 

a single-observer reference segmentation. Furthermore, it challenges the comparison 

between two, proposed algorithms based on the reported error metrics when they have been 

tested on different image datasets with different reference segmentations. It could be helpful 

for reducing the interobserver variability effects on evaluation if we evaluate our algorithm’s 

segmentations against multiple, manual reference segmentations on the same image dataset.

4.B. Segmentation algorithm accuracy and computation time

With respect to the interobserver variability observed in manual segmentation, there is no 

gold standard defined for validation of the prostate segmentation in CT images. Therefore, 

the best reasonable and measurable performance compared to a manual reference 

segmentation which could be reached for a computer-assisted segmentation method should 

not be less than the highest observed variation range between each two experts in manual 

segmentation. For the proposed algorithm, a comparison between corresponding mean 

values of Table II and Table III shows that there is still a gap between the performance of our 

algorithm and the measured difference between the two observers. The results suggest that 

there is still room for improvement of the algorithm in terms of the measured error metrics. 

However, comparing the standard deviation of the metrics and the ranges of the metric 

values in Table II and Table III shows that the magnitude of this variation in terms of most of 

the error metrics is higher when two human experts are being compared together. It means 

that there are some cases for which the measured difference between the algorithm 

segmentation and a human expert manual segmentation is lower than the measured 

difference between that expert and another human expert’s manual segmentation. In Figure 

8, the bar graphs of DSC and MAD (Figure 8a and c) for P2 and P8 and the bar graphs of 

HD (Figure 8e) for P2, P6, P7, and P8 also support this finding.

For comparison with previous work published in the literature, Table V shows that the 

performance of the proposed method was within the reported metric values in terms of MAD 

and DSC and it outperformed the other methods listed in the Table in terms of SR. The 

better performance of those methods (references 10–14) in Table V that have used the 

previously acquired treatment images of the same target patient for training the algorithm 

Shahedi et al. Page 13

Med Phys. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



seems reasonable. In general, the reported errors in terms of MAD and DSC for those 

segmentation methods that use prostate border information of previous planning and/or 

treatment images of the target patient are lower than the MAD and DSC errors we measured 

for our method. Our method has similar performance or outperformed the other methods in 

terms of MAD and DSC. We measured SR of 94% for the proposed segmentation method, 

and which is higher than the reported SR values of the previous method. This suggests that 

on average, our algorithm’s segmentation label covers the reference better than the other 

algorithms and that is an important feature for an algorithm that may be utilized for radiation 

therapy. The measured PR of our algorithm, i.e. the proportion of the segmentation that 

covers the reference, is lower than the SR (82%). This means that 18% of the voxels are 

incorrectly classified as prostate. Therefore, this could cause irradiation of the healthy 

tissues during radiotherapy and needs to be improved.

Comparing the measured error metrics for the proposed segmentation method tested on post-

LDR brachytherapy images (Table VI) to our results on non-brachytherapy images (Table 

III) showed no meaningful or significant difference between the corresponding metric 

values. This suggests that our method may be used for both non-brachytherapy and post-

LDR brachytherapy images. One explanation for this finding may be that in our algorithm 

prostate the surface is searched locally and close to the boundary region where fewer 

brachytherapy seeds are located and interfere the algorithm performance. The potential 

interference of few brachytherapy seeds in the prostate surface point search may be 

compensated by using shape model and shape regularization.

The main part of the segmentation procedure of the proposed algorithm is run on a set of 

rays, and the execution on each ray is completely independent of the others. Therefore, the 

segmentation part is computationally parallelizable and it makes the algorithm highly 

capable for computation speed up. A parallel implementation on an unoptimized MATLAB 

research platform, using 12 CPU cores yields to about 20 s. of the computation time per 3D 

image, and which is lower than the other reported execution time in Table V. The total 

segmentation time including the manual operator interaction time was less than 1.5 min per 

3D image which is substantially less than fully manual delineation time of 4.46 min reported 

in 5.

4.C. Limitations

The performance of our segmentation algorithm should be considered in the context of the 

strengths and limitations of the proposed method. To apply the fully 3D image search we 

resampled the images to deal with relatively large through-plane to in-plane voxel dimension 

ratio of 4.25:0.977 and make the voxel size isotropic. However, image resampling could 

affect the texture extraction part. We used nearest neighbor interpolation to reduce this effect 

as much as possible. Moreover, optimization on the size of the median filter for image 

denoising might be helpful to improve the texture-preserving noise reduction process. We 

also used a fixed patch size of 11 × 11 × 11 voxels for this study. An optimization on patch 

size might help to improve the performance of the segmentation algorithm. The small size of 

the non-brachytherapy testing dataset (10 images) is another limitation of this study.
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5. Conclusions

In this manuscript, we have presented a semiautomatic, learning-based technique for full 3D 

segmentation of the prostate on CT images. Our method is trained based on local texture and 

shape characteristics of the prostate in CT images. The algorithm is initialized with a set of 

operator inputs to start the search for prostate surface around an estimated prostate surface 

generated using a shape modeling method. A radial search is then performed to extract a set 

of local texture features of 3D cubic image patches centered at a set of points along a 

number of rays and close to the initial estimated surface. A ray-specific trained SVM 

classifier is then used for each ray to predict the prostate surface point on the ray. The 

extracted surface points are regularized and interpolated to form a smooth, plausible 3D 

surface for the prostate. The proposed method is not related to patient-specific data, i.e. 

previously acquired and segmented CT images from the same patient, for segmenting a 

patient’s image and could, therefore, also be used for radiotherapy planning CT image 

segmentation. To have a better interpretation of the algorithm performance, we evaluated our 

segmentation method against manual reference segmentation using a set of surface-, region 

overlap-, and volume-based error metrics. We measured the error metrics for the whole 

prostate gland as well as for the apex, mid-gland, and base regions. We also used two, 

different sets of manual reference segmentations to evaluate our method robustness to 

changing the reference. The measured error for the proposed algorithm against manual 

segmentation shows that our segmentation method achieved a segmentation accuracy close 

to the variation range observed in manual segmentation and comparable to the previously 

presented work with a statistically significant higher sensitivity compared to the previous 

work.
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Figure 1. 
The general framework of the proposed segmentation method.
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Figure 2. 
Anteroposterior symmetry axis angle measurement. (a) Original 3D CT image. (b) Rough 

hip bone segmentation label after thresholding. The yellow cross shows the centroid of the 

bones. (c) The cropped region (dashed box) about the centroid. (d) ith 2D slice of the image 

and (e) its flipped version. (f) Rigid registration between (d) and (e). αi,T is the rotation 

angle after rigid registration and αi is the measured angle between the patient 

anteroposterior symmetry axis on ith slice and the anteroposterior axis of the image.
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Figure 3. 
A schematic illustration of the prostate surface, (a) the selected points on a sample ray (Rn) 

used for feature extraction, and (b) a selected 3D cubic image patch centered at a sample 

point, xp, yp, zp , on ray Rn.
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Figure 4. 
Histograms of feature values measured from prostate and non-prostate image patches. T0 is 

the threshold level in which all of the feature values above that level belong to non-prostate 

image patches, and T1 is the threshold level in which the feature values below that level 

belong to prostate image patches. The feature values between T0 and T1 belong to either 

prostate or non-prostate image patches.
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Figure 5. 
Segmentation procedure steps. (a) 86 rays cast from a center point of the gland. (b) Yellow 

dots show the candidate surface points. (c) – (e) Purple surface shows the algorithm results 

after shape regularization and reconstruction. (f) Comparison between the algorithm 

segmentation in purple and the reference in green. (g) and (h) show algorithm results in 

purple, reference in green, and surface candidate points (yellow dots). Note that yellow and 

green appear bright and purple appears dark in grayscale print.
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Figure 6. 
Qualitative segmentation results on five, 2D axial slices for three sample prostates. Each row 

shows the results for one patient. The left column shows the apex slices, and the right 

column shows the base slices. The algorithm segmentation is shown with yellow (or bright 

in grayscale print) contours, the first reference is shown with black contours, and the second 

reference is shown with white dotted contours.
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Figure 7. 
Qualitative and quantitative segmentation results in 3D for the three, sample prostates shown 

in Figure 2.
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Figure 8. 
Performance of the proposed segmentation algorithm based on two operators and two 

references vs interobserver variability in manual segmentation for 10 non-brachytherapy test 

images in terms of (a) – (b) DSC, (c) – (d) MAD (for reference 1 to reference 2 comparison 

MADb was measured) and (e) – (f) HD error metrics. Box plots (b), (d) and (f) show the 

minimum (lower bar), 25 percentile to 75 percentile (blue box), maximum (upper bar), mean 

(blue cross symbol), median (red line segment) values of the metrics, and the outliers (blue 
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