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ABSTRACT 

CT is routinely used for radiotherapy planning with organs and regions of interest being segmented for diagnostic 
evaluation and parameter optimization. For cardiac segmentation, many methods have been proposed for left ventricular 
segmentation, but few for simultaneous segmentation of the entire heart. In this work, we present a convolutional neural 
networks (CNN)-based cardiac chamber segmentation method for 3D CT with 5 classes: left ventricle, right ventricle, 
left atrium, right atrium, and background. We achieved an overall accuracy of 87.2% ± 3.3% and an overall chamber 
accuracy of 85.6 ± 6.1%. The deep learning based segmentation method may provide an automatic tool for cardiac 
segmentation on CT images.      
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1. INTRODUCTION 

Computed tomography (CT) is routinely used for diagnosing conditions, treatment planning, and procedure guidance1-4. 
In the field of radiation oncology, the heart can be segmented from CT volumes when planning a radiotherapy treatment 
plan when the dose is applied near the heart 5. Cardiologists and surgeons use CT images for planning procedures to 
correct septum defects and diagnosing congenital heart disease6, 7. Precise chamber-specific segmentation can also be 
used to assess cardiac function using metrics such as chamber volume, ejection fraction, and myocardial mass8.  

The processes of segmentation can be time consuming for a radiologist. A quick and accurate segmentation method 
capable of locating individual heart chambers is desirable. Other groups have segmented the four heart chambers on CT 
previously, but the methods required the deformation of a prior model or atlas9, 10. In most cardiac cases, this would 
require a non-rigid deformation, which can introduce additional errors into segmentation, due to natural differences 
between patient anatomy 11. This is further compounded when 4D atlas-based segmentation is considered12, 13. Other 
methods depend on computed tomography angiography data for atlas segmentation14, 15. However, this procedure is time-
consuming and exposes the patient to more radiation than a traditional CT.   

A convolutional neural network (CNN) segmentation method offers a valuable alternative to atlas-based approaches. A 
key advantage of using a CNN is that there is no need to perform deformable registration. Many different heart sizes and 
conditions could be included in the training data to create the model, which removes the need for a generalized physical 
representation of the heart. In addition, a CNN could be easily integrated into imaging software to provide automatic 
estimations for measurements such as heart size and surface-to-volume ratios during CT scans. In this study, we explore 
how a CNN could be used to segment the four chambers of the heart using patches from 3D CT images.   
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shown in Table 1. Increasing the convolutional filter sizes caused a steady increase in overall accuracy and a decrease in 
standard deviation. Using sizes of 500, 500, 1000, and 1000 for the convolutional filters, an average accuracy of 87.2% ± 
3.3% was obtained. Average accuracies for each chamber were over 80%, while the average accuracy for the background 
patches was 93.7% ± 2.4%.  

 

Table I. Effect of convolutional filter size on classification results. Results shown represent the average accuracy for 
all patients. The values for the other parameters are shown below the table. Accuracies are in percentage. 

CFS 
1 & 2 

CFS 
3 & 4 

Background LV RV LA RA Overall 

150 75 88.4 ± 4.9 78.1 ± 9.1 73.3 ± 9.0 69.2 ± 11.2 66.0 ± 8.5 75.0 ±  5.7 

200 100 88.7 ± 4.4 78.4 ± 14.2 73.9 ± 9.1 71.1 ± 5.8 69.3 ± 7.7 76.3 ± 5.3 

100 200 88.9 ± 4.2 82.9 ± 7.9 74.6 ± 9.3 70.9 ± 10.1 71.3 ± 7.1 77.7 ± 4.8 

200 400 91.6 ± 3.2 79.6 ± 7.1 78.9 ± 9.7 82.0 ± 6.6 77.9 ± 6.4 82.0 ± 4.3 

300 600 92.6 ± 2.9 85.4 ± 6.4 80.5 ± 8.8 83.1 ± 7.6 80.6 ± 4.2 84.8 ± 4.2 

400 800 93.1 ± 2.8 86.6 ± 5.8 81.6 ± 7.7 85.9 ± 5.7 82.9 ± 6.2 86.0 ± 3.7 

500 1000 93.7 ± 2.4 87.8 ± 5.6 82.9 ± 6.2 88.6 ± 3.5 83.0 ± 6.2 87.2 ± 3.3 

Learning Rate: 0.005, Drop-out Value: 1.0, Bias Initialization Constant: 0.10, ρ: 0.95, ε: 1 x 10-9, Fully 
Connected Layer Neuron Counts: 256 and 128. CFS: Convolution Filter Size 

 

Individual patient performance using the optimal CNN parameters with convolutional filter sizes of 500, 500, 1000, and 
1000 are shown in Table II. The overall accuracy for each patient was greater than 80%, with values ranging from 80.8% 
to 92.9%. All individual class accuracies were 73.0% or greater. Among the four chamber classes used, the performance 
for each patient for each chamber differed. For instance, Patients 1 and 2 had lower accuracies in the left atrium, while 
Patients 3 and 4 had their lowest accuracies in the right ventricle.  

4. DISCUSSION 

Overall, the average classification accuracies increased with increasing convolution filter sizes, as shown in Table I. This 
indicated the number of features needed to accurately classify the patches was relatively large. The large patch size 
helped by providing enough information for the CNN to extract the variety of features needed. Background patches had 
the highest accuracy, which was not unexpected since the anatomy outside the heart was easily distinguishable from 
cardiac anatomy. The left and right atrium patches saw the largest improvements with increasing convolutional filter 
sizes. Standard deviations for the average accuracies also decreased, showing more consistency between patients during 
leave-one-out cross-validation training.  

The individual patient performances in Table II show only three patients with an overall accuracy below 85%: Patients 7, 
10, and 11. Patient 7 had the lowest right atrium accuracy of all 11 patients. Patient 10 had the lowest right ventricle 
accuracy. Patient 11 had the lowest overall accuracy, with relatively poor performances for the left ventricle and right 
atrium. Left atrium classification accuracy was high for all patients, with the lowest being 83.7% and four patients 
having accuracies over 90%. This suggests some uniformity between patient left atriums which may not exist in the other 
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chambers. For example, even though the left ventricle classification accuracy was also high, Patient 11 performed poorly, 
suggesting some dissimilarity exists between the left ventricle of Patient 11 and the other patients.  

 

Table II. Individual patient performance using the optimal CNN parameters with convolution filter sizes of 
500, 500, 1000, and 1000. Accuracies are in percentage. 

Patient # Background  LV RV LA RA Overall 

1 95.7 91.9 97.8 86.2 93.1 92.9 

2 96.4 90.3 86.4 84.7 86.0 88.8 

3 95.0 90.0 78.2 87.6 82.1 86.6 

4 97.2 88.4 76.4 89.6 82.0 86.7 

5 94.0 91.8 86.0 95.9 90.3 91.6 

6 94.4 93.5 83.2 92.2 77.4 88.2 

7 90.4 84.2 86.6 89.1 73.0 84.7 

8 92.9 92.0 78.2 90.4 88.9 88.5 

9 93.5 87.7 84.7 90.2 80.3 87.3 

10 88.4 82.7 74.6 84.8 86.2 83.3 

11 92.7 73.1 80.2 83.7 74.1 80.8 

Average 93.7 ± 2.4 87.8 ± 5.6 82.9 ± 6.2 88.6 ± 3.5 83.0 ± 6.2 87.2 ± 3.3 
 

A limitation of the study was the small number of patients included. By using more hearts in the training dataset, the 
classification accuracy of each patient and the average accuracies for each class should become more uniform. In 
particular, the average accuracies for the right ventricle and atrium could approach that of the left ventricle and atrium, 
increasing the overall accuracy of the method. Including more data would also decrease the risk of dissimilar patients. 
   

5. CONCLUSIONS 

We developed a patch-based, entirely autonomous convolutional neural network-based method to segment the four heart 
chambers from a conventional CT scan with high accuracy. This approach required no atlas and no prior registration 
between patients, reducing possible sources of error. Data pre-processing was limited to only patch creation, which is 
easily performed independently of the user. The results from the method can then be used for patient treatment planning 
or to automatically calculate cardiac function metrics. Future work will extend the CNN to four-dimensional (4D) CT 
and to explore the use of 3D patches to further improve the results.  
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