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ABSTRACT 

Ultrasound is widely used for diagnosing cardiovascular diseases. However, estimates such as left ventricle volume 
currently require manual segmentation, which can be time consuming. In addition, cardiac ultrasound is often 
complicated by imaging artifacts such as shadowing and mirror images, making it difficult for simple intensity-based 
automated segmentation methods. In this work, we use convolutional neural networks (CNNs) to segment ultrasound 
images of rat hearts embedded in agar phantoms into four classes: background, myocardium, left ventricle cavity, and 
right ventricle cavity. We also explore how the inclusion of a single diseased heart changes the results in a small dataset.  
We found an average overall segmentation accuracy of 70.0% ± 7.3% when combining the healthy and diseased data, 
compared to 72.4% ± 6.6% for just the healthy hearts. This work suggests that including diseased hearts with healthy 
hearts in training data could improve segmentation results, while testing a diseased heart with a model trained on healthy 
hearts can produce accurate segmentation results for some classes but not others. More data are needed in order to 
improve the accuracy of the CNN based segmentation.     

Keywords: Cardiac ultrasound, Image segmentation, Heart disease, Convolutional neural networks, Ultrasound, 
Cardiovascular disease, Myocardium segmentation    

1. INTRODUCTION 

Each year, cardiovascular diseases lead to more deaths in the United States than any other disease1. And each year, 
millions of ultrasound imaging procedures are performed in the pursuit of better cardiovascular care2. Ultrasound 
imaging is commonly used in a clinical setting to investigate and diagnose cardiovascular health because of the low cost, 
minimal risk, and short acquisition times3. The technology has even improved to the point where real-time monitoring 
devices are emerging onto the market4. However, ultrasound images are prone to a variety of artifacts, related to both the 
hardware used and the physiology of the patient5, 6. This can make it difficult to accurately segment cardiac volumes on 
ultrasound manually by trained radiologists or relying on simple intensity thresholding methods7, 8. Previous groups have 
developed computerized cardiac segmentation methods on ultrasound images using a variety of approaches, including 
Bayesian probability, sparse matrix transforms, and FSL9-11. An automated method that can accurately identify the 
chambers of the heart and the myocardial boundary could provide real-time measurement estimates for cardiac function, 
enabling clinical staff to more easily monitor patients during procedures or status following surgery. Myocardial 
identification can also be useful to quickly create masks to use during cardiac registration between different imaging 
modalities12, 13.   

One promising solution for automated segmentation is the use of convolutional neural networks (CNN). CNN’s have 
recently emerged as a powerful tool for medical segmentation due to their flexibility14-16. However, accurate 
segmentation results are reliant on well-trained models, which can require many samples from hundreds or thousands of 
different patients, depending on how similar the object is between patients. In the case of hearts, the structure and size 
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can vary among healthy subjects, and even more so when including those with cardiovascular disease. Shape distortions 
due to cardiovascular disease can vary from slight myocardial wall thickening due to infarction or more extreme 
ventricular distensions, such as that seen in congenital heart disease17.  

In this work, we explore using convolutional neural networks to segment ultrasound images of rat hearts embedded in 
phantoms. In addition, we include a rat with right ventricle heart failure to investigate how the segmentation results 
change when an extreme case is included.  

2. METHODS 

2.1 Sample Preparation and Imaging 

A summary of the processing workflow is shown in Figure 1. First, hearts were excised from five Sprague Dawley rat, 
one of which had undergone pulmonary artery banding in order to model heart failure18, following Emory University 
IACUC-approved standards. Each was promptly perfused with PBS to remove blood from the heart chambers. Once 
thoroughly rinsed, the hearts were fixed in formalin overnight. Each heart was then rinsed with cold PBS and embedded 
in 2% agar phantoms, with each chamber being carefully filled with agar to ensure structural integrity and measurement 
repeatability during imaging. The rat hearts were imaged in B-mode using a 30 MHz probe on a Vevo 2100 ultrasound 
system (FUJIFILM VisualSonics, Inc., Toronto, Canada) in the short-axis view. Each image was saved and exported as a 
TIFF for processing.  
 

 
Figure 1. Complete workflow summary for the presented project. Following removal, the hearts were fixed and embedded into 
phantoms. Each phantom was then imaged with ultrasound, and the images segmented by a trained radiologist to create masks. The 
masks were used to create patches which were subsequently used in a CNN.    

2.2 Data Processing 

The ultrasound images were loaded into Matlab (The MathWorks, Inc., Natick, MA), combined to form a 3D volume, 
and saved in the Analyze 7.5 data format. The ultrasound volumes were then opened in Analyze 10.0 (AnalyzeDirect, 
Overland Park, KS) where the myocardium (Myo), left ventricle cavity (LVC), and right ventricle cavity (RVC) were 
segmented by a radiologist to create binary masks. The hearts were also rotated to ensure similar orientations along the 
long axis. Patches were created in Matlab using the masks as labels, with each patch being centered on a pixel from the 
mask. Any pixel not part of an existing mask was used to create background (BG) patches.  

2.3 Convolutional Neural Network  

The CNN dataset for each heart was generated by randomly selecting 5000 patches from each class to ensure no training 
bias from class imbalance in the network, for a total of 20,000 patches per heart. These patches were fed into 
TensorFlow19 using the AdaDelta20 optimizer for classification into one of the four classes. An example of the mask used 
to create the patches is displayed in Figure 2. The CNN (Figure 3) consisted of four convolutional layers followed by 
two fully connected layers. Convolutions were performed using the ‘SAME’ specification. After these fully connected 
layers, each patch is assigned to one of the four classes mentioned above. Training was performed using leave-one-out 
cross-validation. Parameters were adjusted to optimize the overall accuracy of the segmentation.   
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Figure 2. Gold standard segmentation examples. Segmentations were performed 
in the short-axis view. On the masks, blue represents the myocardium, green the 
interior of the LV, and yellow the interior of the right ventricle. Background was 
considered anything in the volume not segmented by the radiologist.   

 

Three different scenarios were considered for the CNN. In Scenario 1, 20,000 patches from each of three healthy hearts, 
for a total of 60,000 patches, were used to train a CNN model. This model was then tested on 20,000 patches from the 
fourth healthy heart. Scenarios 2 and 3 were investigated using four healthy hearts and the diseased heart with standard 
leave-one-out cross-validation. This provided 80,000 training patches, 20,000 patches from each of the four hearts used 
for training, and 20,000 patches for validation. Scenario 2 used the result when the four healthy hearts were used as the 
training dataset and the diseased heart was left out for validation. Scenario 3 used the remaining results, where three 
healthy hearts and the diseased heart were used for training and the model was tested on the healthy heart left out. This 
produced a total of four results, one for each healthy heart.  
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Figure 3. Diagram of the neural network used for the rat heart segmentation. The input data was in the form of 2D patches and fed into 
four convolutional layers followed by two fully connected layers. After the fully connected layers, a classification label was applied to 
each patch. 

 

2.4 Validation 

Validation was performed by comparing the CNN classification label to the actual label of the patch based on the gold 
standard from the radiologist. Accuracy for each class was calculated as the percent of correctly labeled patches over the 
total number of patches for that class. In addition to individual class accuracies (Myo, LVC, RVC, and BG), the overall 
accuracy was calculated as a sum of all the correct patches divided by the total number of patches used. Chamber 
accuracy was then calculated as the number of correct LVC and RVC patches over the total number of patches for both 
classes.  

3. RESULTS 

A visual comparison between a healthy and diseased rat heart is shown in Figure 4, with the image acquired using B-
mode ultrasound in the short-axis orientation near the mid-ventricular level. The overall size of the diseased heart is not 
noticeably different than the healthy heart.  However, inside the diseased heart, the left ventricle is noticeably shrunken 
and less circular than that of the healthy heart. In contrast, the right ventricle of the diseased heart has a larger volume 
and a more half-circle shape compared to the more crescent shape (white arrow) seen in the healthy heart. This is 
primarily due to the distortion of the ventricular septum, denoted by the red arrows in the figure, and not from any 
change in the right ventricle exterior myocardial wall.  
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Figure 4. A visual comparison between a healthy rat heart (left) and the diseased heart (right), which had undergone pulmonary artery 
banding. The images were acquired using B-mode ultrasound near the midpoint of the ventricles. There is a significant difference in 
left and right ventricle size between the two hearts. Additionally, the shape of the ventricular septum (red arrows) shows more 
curvature in the healthy heart than the diseased heart. 

 

The CNN parameters were optimized using the overall average accuracy of Scenario 3: three healthy and one diseased 
hearts are used as the training data and one additional healthy heart is used as the testing data. Training was performed 
for 20 epochs, with each epoch representing a round of training on all the training data. The testing data was evaluated at 
the end of each epoch to prevent any training bias. The result with the highest overall accuracy for each rat heart in the 
testing dataset was chosen as the final result during the leave-one-out cross-validation. Patches were loaded with a batch 
size of 5 and the order of patches was randomly shuffled after each epoch. Patch sizes of 11 x 11 and 21 x 21 were tested, 
with 21x21 found to produce better results. Convolutional kernel sizes of 3 x 3 and 5 x 5 were tested, with the 5 x 5 
kernel size being selected for the final results. Filter sizes for the four convolutional layers were optimal at 200, 200, 600, 
and 600, while the fully connected layers contained 256 and 128 neurons after testing various combinations. Drop-out 
rates from 0.5 to 1.0 were investigated, with 1.0 having the best results. The optimal learning rate, AdaDelta parameter ρ, 
and AdaDelta parameter ε were found to be 0.001, 0.98, and 1.0 x 108, respectively. Once the optimal parameters were 
determined, they were used for the remaining scenarios. 

Neural network segmentation classification results are shown in Table 1 for Scenario 1, which performed the leave-one-
out cross-validation using the data of four healthy rat hearts, i.e.,the data of three hearts for training and the data of one 
additional heart for testing. Accuracies for each segmentation class, the overall accuracy, and accuracy of the chambers, 
are shown, as well as the epoch number which produced the best accuracy for each heart.  Averaged results from all four 
hearts are shown at the bottom of the table. The overall average accuracy was found to be 72.4% ± 6.6%, with an 
average chamber cavity accuracy of 70.6% ± 13.1%. The overall accuracy for the background patches was relatively 
high at 78.8% ± 4.6%, with the value for each heart over 70%. RVC patches had the lowest average accuracy at 67.3% ± 
21.1% followed by the Myo patches at 69.6% ± 8.7%. This was due to the poor performance of healthy heart #1 in these 
two categories.  
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Table 1. Results from the segmentation of rat hearts using a CNN  
when the diseased heart is excluded from model training and testing. 

Verification 
Dataset Best 

Epoch 
Accuracy (%) 

BG Myo LVC RVC Chambers Overall 

Healthy #1 2 85.4 59.3 69.9 32.9 51.4 61.9 
Healthy #2 7 75.3 71.3 75.5 85.2 80.4 76.8 
Healthy #3 9 80.8 65.2 85.8 83.9 84.9 78.9 
Healthy #4 11 73.7 82.7 63.9 67.5 65.7 72.0 
Average - 78.8 ± 4.6 69.6 ± 8.7 73.8 ± 8.1 67.3 ± 21.1 70.6 ± 13.1 72.4 ± 6.6 

BG: Background, Myo: Myocardium, LVC: Left Ventricle Cavity, RVC: Right Ventricle Cavity, Chambers: Combined LVC and RVC accuracies 

 

Results from Scenarios 2 and 3 are shown in Table 2. The epoch with the best result for each heart was chosen and the 
various accuracies for that epoch are shown in the table, with the averages displayed at the bottom of the table. Scenario 
2 had an overall accuracy of 57.2%, mostly due to poor performance on RVC patches. Accuracies for BG and LVC 
patches were high, with values of 80.6% and 86.2%, respectively. Scenario 3 had an average overall accuracy of 73.2% 
± 4.0%, which was the highest average overall accuracy of all three scenarios investigated. Compared to Scenario 1 in 
Table 1, the RVC accuracy for the healthy heart #1 was much higher in Scenario 3, with an accuracy of 93.3%. However, 
Myo accuracy decreased by 13.9% to 45.4% for the same heart.  
 

4. DISCUSSION 

When trained on three healthy hearts and tested on a fourth (Scenario 1, Table 1), the average background patch 
accuracy was higher compared to the average chamber cavity and myocardium accuracies.  The overall accuracy for this 
scenario was adversely affected by poor results from healthy heart #1, which had low accuracies for the right ventricle 
cavity and myocardium. This also contributed to the large standard deviations for the average RVC and chambers 
accuracies. This could indicate the presence of features unique to the healthy heart #1 dataset in the Myo and RVC 
patches.  

The accuracy when testing on the diseased heart after training on four healthy hearts (Scenario 2) was poor, due almost 
exclusively to the lack of training on RVC patches. The diseased heart performed well on the LVC and BG patches, but 
struggled with the Myo patches and failed completely with the RVC. This is due to the absence of RVC training samples 
which depict such a large chamber. On a healthy rat, the RVC is a thin crescent compared to that of the diseased heart 
(Figure 4). The close proximity of the right ventricle walls in the healthy hearts provides useful classification features for 
the CNN. This was not the case in the diseased heart, causing the RVC to often be misclassified as the LVC or BG.  
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Table 2. Results from the segmentation of rat hearts using a CNN 
when 4 healthy and 1 diseased heart are used for leave-one-out cross-validation. 

Verification 
Dataset Best 

Epoch 
Accuracy (%) 

BG Myo LVC RVC Chambers Overall 

Diseased 4 80.6 61.8 86.2 0.0 43.1 57.2 
Healthy #1 3 78.1 45.4 73.1 93.3 72.5 72.5 
Healthy #2 10 76.5 79.1 67.3 76.4 74.8 74.8 
Healthy #3 6 76.3 58.1 89.9 88.4 78.8 78.2 
Healthy #4 3 71.1 74.0 56.9 67.3 66.1 67.3 
Average: 

All - 76.5 ± 3.1 63.7 ± 11.9 74.7 ± 12.1 65.1 ± 33.8 69.9 ± 16.3 70.0 ± 7.3 
Average: 
Healthy - 75.5 ± 2.6 64.2 ± 13.3 71.8 ± 12.0 81.4 ± 10.2 76.6 ± 10.4 73.2 ± 4.0 

BG: Background, Myo: Myocardium, LVC: Left Ventricle Cavity, RVC: Right Ventricle Cavity, Chambers: Combined LVC and RVC accuracies 

 

Training on the diseased heart and three healthy hearts (Scenario 3) produced the highest average overall accuracy of all 
three scenarios considered. However, while some accuracies did improve after including the diseased heart, others 
deteriorated when compared with Scenario 1. This suggests that the inclusion of the diseased heart only in the training 
data might provide improvements just by increasing the number of training samples and patches, even if some of the 
patches correspond to diseased tissue. 

There were several limitations for the presented work. First, only a small number of rats were used, which can contribute 
to fewer useful features in the CNN.  A training set with patches from more hearts could improve the presented results. 
Second, the hearts were only roughly aligned relative to one another. A more rigorous, deformable registration could 
improve the similarity between the samples, although the importance of this would decrease as the number of training 
samples increased. Finally, a patch size of 21 x 21 was chosen for the work, but a larger patch size could improve the 
accuracy by providing more potential features for the CNN to extract. This is especially important for the LVC and the 
BG, where areas near the myocardium would be similar. A larger patch size would enable the CNN to use more of the 
myocardium shape and location to determine the correct patch label for segmentation. 

5. Conclusion 

In this work, we proposed and implemented a convolutional neural network to segment the heart on ultrasound images.. 
Modest accuracies were obtained when a CNN model was trained on limited number of dataSlight improvements in 
overall average accuracies were noted when a diseased heart was included in the training data. This showed that the 
model was able to compensate for the inclusion of diseased heart samples in the model when testing on a healthy heart. 
More data are needed in order to improve the accuracy of the CNN-based segmentation approach.   
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