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ABSTRACT

Head and neck squamous cell carcinoma (SCCa) is primarily managed by surgical resection. Recurrence rates
after surgery can be as high as 55% if residual cancer is present. In this study, hyperspectral imaging (HSI)
is evaluated for detection of SCCa in ex-vivo surgical specimens. Several methods are investigated, including
convolutional neural networks (CNNs) and a spectral-spatial variant of support vector machines. Quantitative
results demonstrate that additional processing and unsupervised filtering can improve CNN results to achieve
optimal performance. Classifying regions that include specular glare, the average AUC is increased from 0.73
[0.71, 0.75 (95% confidence interval)] to 0.81 [0.80, 0.83] through an unsupervised filtering and majority voting
method described. The wavelengths of light used in HSI can penetrate different depths into biological tissue,
while the cancer margin may change with depth and create uncertainty in the ground-truth. Through serial
histological sectioning, the variance in cancer-margin with depth is also investigated and paired with qualitative
classification heat maps using the methods proposed for the testing group SCC patients.

Keywords: Hyperspectral imaging, convolutional neural network, deep learning, optical biopsy, intraoperative
imaging, head and neck surgery, head and neck cancer

1. INTRODUCTION

Head and neck cancer is the 6th most common cancer world-wide, with majority of cancers of the oral cavity
and oropharynx being squamous cell carcinoma (SCC).1 Approximately two-thirds of SCC patients present with
advanced disease, either stage III or IV.2 Surgical resection is the primary management SCC of the aerodigestive
tract, potentially with concurrent chemo-radiation therapy depending on the extent of the disease.3

A modern advance in robotic oncologic surgical techniques of the head and neck, trans-oral robotic surgery
(TORS), has been developed using the da Vinci robotic system (Intuitive Surgical, Sunnyvale, CA) and demon-
strated use in resection of orophangyeal and laryngeal SCC with promising results on functional preservation.4

The da Vinci system relies on conventional optical imaging using a high resolution monitor, but studies have
aimed to expand the optical imaging capabilities utilized. Fluorescence guided robotic surgeries have found a wide
range of uses in gastroenterology, urology, and gynecology.5 For use in TORS, a fluorescent nuclear contrast
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agent can be visualized with high-resolution micro-endoscopic imaging for oropharyngeal SCC with technical
feasibility in three patient case reports.6 Several label-free, optical imaging approaches have been presented for
TORS.7–9 Label-free fluorescence lifetime imaging has been integrated with TORS for 25 patients with head and
neck cancer.7 Additionally, early patient reports show that optical narrow-band imaging has shown success in
promoting negative surgical margins in TORS for SCC resection.8,9

The local recurrence rates for SCC cases depend on the successful removal of the cancer. For surgeries
with negative cancer margins, the local recurrence rate is 12-18%, compared to local recurrence rates up to
30-55% if positive cancer margins are determined.10–12 Moreover, positive cancer margins have a greatly reduced
disease-free survival, with estimates ranging from 7 to 52%, compared to disease-free survival rates of 39-73%
for negative margins.13,14 Disease recurrence greatly affects likelihood for additional surgeries, reduced quality
of life, complications from surgery, and increased mortality rates.15

Hyperspectral imaging (HSI) is a non-contact optical imaging modality capable of acquiring a single image
of potentially hundreds of discrete wavelengths. Preliminary research demonstrates that HSI has potential for
providing diagnostic information for various diseases.16 Machine learning methods, including support vector
machine (SVM) and convolutional neural networks (CNNs), the latter being an implementation of artificial
intelligence, have demonstrated near human-level ability for image classification tasks.17,18 Preliminary studies
from our group show that HSI combined with machine learning may yield diagnostic information with potential
applications for surgical use.19–22 HSI uses wavelengths of light that can penetrate different depths into biological
tissue, so it is possible that the cancer margin may change with depth and create uncertainty in ground truth.

This study aims to investigate the ability of HSI to detect SCC in surgical specimens from the upper aerodi-
gestive tract using several distinct machine learning pipelines. Additionally, another objective of this work is
to investigate the limiting factors of HSI-based SCC detection, including specular glare, noise and blur, and
uncertainty in the ground truth due to changes in superficial cancer margin with depth, all of which must be
thoroughly explored to understand the potential of HSI in the operating room. This work expands upon previous
cross-validation experiments with CNN-only methods to include multiple machine learning pipelines involving
CNNs and other state-of-the-art methods. Additionally, the proposed methods are tested on five HSI from five
SCC patients, and the accuracy of the corresponding ground truths from these five tissues are investigated by
serial histological sectioning.

2. METHODS

2.1 Experimental Design

In collaboration with the Otolaryngology Department and the Department of Pathology and Laboratory Medicine
at Emory University Hospital Midtown, 203 head and neck cancer patients undergoing surgical cancer resection
were recruited for our hyperspectral imaging studies. In our previous study, we have evaluated the efficacy of
using HSI for optical biopsy.19,23 Excised tissue samples of head and neck squamous cell carcinoma (HNSCC)
and normal tissue were collected from the upper aerodigestive tract sites, including tongue, larynx, pharynx, and
mandible. Three tissue samples were collected from each patient, i.e., a sample of the tumor, a normal tissue
sample, and a sample at the tumor-normal interface and were scanned with a hyperspectral imaging system.22,24

In this study, we selected 12 patients for this analysis, which were divided into two groups. The first 7 patients
were used for evaluating quantitative results, expanding from previously published results.21 Five additional
patients were classified using models trained from the first 7 patients, and these 5 patients results are presented
qualitatively and also investigated is the variation in the cancer margin with tissue depth.

2.2 Hyperspectral Imaging

Hyperspectral images were acquired of ex-vivo surgical specimens using a previously described CRI Maestro
imaging system (Perkin Elmer Inc., Waltham, Massachusetts), which capture images that are 1040 by 1,392
pixels and a spatial resolution of 25 µm per pixel.19,24–26 Each hypercube contains 91 spectral bands, ranging
from 450 to 900 nm with a 5 nm spectral sampling interval. The hyperspectral data were normalized at each
wavelength sampled for all pixels by subtracting the inherent dark current and dividing by a white reference
disk, according to the following equation.23,26
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Figure 1: Two representative tissue specimens from different patients. Left to right: HSI-RGB composite image;
binary ground-truth mask including glare regions, generated by only removing patches centered on specular
glare; binary ground-truth mask avoiding glare regions, generated by sufficient area to extract 25×25 patches
and avoiding specular glare. SCC in shown in white, and normal tissue shown in grey.

Inorm(λ, i, j) =
Iraw(λ, i, j) − Idark(λ, i, j)

Iwhite(λ, i, j) − Idark(λ, i, j)
(1)

2.3 Histological Imaging

To obtain a ground truth labelling for the tissue specimens imaged with HSI, tissues were inked after imaging
to preserve orientation, fixed in formalin, paraffin embedded, sectioned from the top of the imaging surface,
haemotoxylin and eosin (H&E) stained, and digitized. The ex-vivo tissue sections were reviewed by a board
certified pathologist with expertise in H&N pathology and the cancer margins were outlined using digitized
histology in Aperio ImageScope (Leica Biosystems Inc, Buffalo Grove, IL, USA).

2.4 Histological Ground-Truths

Binary masks are constructed from histological images and matched to the HSI in two methods. The first method
is to investigate only ideal quality pixels, which is constructed by avoiding HSI regions with a large amount of
specular glare. The second method is to investigate the degrading effect of specular glare on classification. For
the ground-truth mask avoiding glare, only regions that contain sufficient area to extract 25×25 spatial patches
without any specular glare are included. For the ground-truth mask including glare regions, the entire tissue
is included for patch-making, but the top 1% of glare pixels are identified by fitting a gamma distribution to
pixel intensities and no patch centered on a glare pixel is included. Figure 1 shows an example of the two masks
generated from two different patients. Both masks will be used for evaluating quantitative testing results and
are referred to as ‘ground-truth mask avoiding glare’, and ‘ground-truth mask including glare’, respectively.
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Figure 2: Representative tissue specimen that underwent serial histological sectioning to evaluate superificial
cancer margin variation with tissue depth. Left to right: HSI-RGB image, first histological slice, binary mask
overlay of the 6 histological images (white is SCC and grey is normal), topographical map of the variation with
depth of the cancer margin.

Figure 3: Block diagram of the proposed pre-processing chain.

2.5 Effect of Sectioning Depth on Cancer Margin Ground-Truth

HSI uses wavelengths of light that can penetrate different depths into biological tissue. It possible that the
cancer margin may change with depth and create uncertainty in the classification results because of the variable
penetration of the HSI spectrum. To investigate this, additional histological sectioning was performed on 5 tumor-
margin tissues (see Figure 2). First, the thickness of the remaining paraffin embedded tissue was estimated. Next,
from the surface already sectioned, which is the top of the tissue that was optically imaged, five more sections
were obtained, up to 300 microns additionally sectioned into the tissue. Therefore, the depth of sectioning was
performed down to approximately 0.3 to 0.5 mm from the HS imaged surface.

2.6 Machine Learning Techniques

2.6.1 Data Pre-processing

A pre-processing chain was applied to the data mainly to reduce the noise in the spectral signatures (Figure 3).
The machine learning methods detailed below were tested with and without the following pre-processing steps.
The proposed pre-processing chain is based on 4 steps: image calibration, operating bandwidth selection, noise
filtering, and data normalization. In the first step, the previously described method to normalize the data using
white and dark references is performed. Next, the spectral bands are truncated between 490-790 nm, so the final
hypercube contains only 61 bands, which will be used for classification. Spectral bands outside this range were
noisy because they were too close to the limits of the HSI camera. In the third step, a smoothing filter is applied
to the data in order to reduce the spectral noise. Finally, each pixels spectral signature is normalized between 0
and 1.

2.6.2 Convolutional Neural Network

A previously described and trained convolutional neural network was used to classify oral cavity tissues imple-
mented using TensorFlow on a NVIDIA Titan-XP GPU.17,18,21,27 In summary, an Inception CNN was designed
and trained using the leave-one-patient-out cross-validation. Validation was performed on all seven held-out
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(a)

(b)

Figure 4: Block diagrams of the proposed classification frameworks. (a) HELICoiD algorithm with the additional
KNN filter. (b) Pipeline of the mixed algorithm.

patients to obtain the results previously reported and shown again in Table 1.21 The 95% confidence intervals
were created using a bootstrapping method by sampling 1000 pixels from each class with replacement from each
patient and calculating the AUC; the method was performed 1000 times for each patient and the 2.5 and 97.5
percentiles were reported. The saved, trained models from the patients from the previous work were used to
classify the 5 testing group HSI patients that underwent serial histological sectioning for surgical margin variation
with depth evaluation. The probabilities of all models were averaged per patient to obtain qualitative probability
heat-maps, scaled from 0 to 1, where 0 represents normal class and 1 represents high probability that the tissue
belongs in the cancer class.

2.6.3 HELICoiD Algorithm

The results of the CNN classification method and the generated probability maps were compared to the results
obtained by a machine learning pipeline previously developed for intraoperative detection of brain cancer using
HSI.28–32 In summary, a spatial-spectral classification algorithm, here referred to as HELICoiD (Figure 4a),
was implemented using a classification map obtained by a support vector machine (SVM) classifier that is
spatially homogenized by employing a combination of a one spectral band principal component analysis (PCA)
decomposition through a K-nearest Neighbors (KNN) filter (Figure 4a, part A). After that, the result of the
KNN filtering is merged with an unsupervised segmentation map generated by a hierarchical K-means (HKM)
algorithm through a majority voting (MV) method.33 The result of this algorithm is a classification map that
includes both the spatial and spectral features of the HS images. In addition, for this application, the KNN
filtering is applied again to the MV probabilities and the PCA one-band-representation to homogenize the
results (Figure 4a, part B). The quantitative classification results of 7 patients are reported in Table 1, obtained
by using leave-one-out cross-validation. In addition, similar to the CNN method, the saved, trained models
from these patients were used to classify 5 tissue specimens that were imaged with HSI and underwent serial
histological sectioning for margin depth evaluation. The probabilities of all models were averaged per patient to
obtain qualitative probability heat-maps, scaled from 0 to 1, where 0 represents normal class and 1 represents
high probability that the tissue belongs in the cancer class. Furthermore, a pipeline that combines the CNN
architecture with the HELICoiD algorithm was proposed. In this case, the spatial-spectral stage of HELICoiD
(PCA+SVM+KNN) is replaced by the CNN architecture (Figure 4b).
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Table 1: Results of inter-patient cross-validation of SCC versus normal, obtained using the leave-one-patient-out
method. Average AUCs reported with bootstrapped 95% confidence interval.

Ground Truth Classifier Avg. AUC [95% Confidence Interval]

Avoiding Glare spatial-SVM 0.71 [0.68, 0.74]

CNN [21] 0.86 [0.82, 0.89]

spatial-SVM Processed 0.82 [0.80, 0.84]

CNN Processed 0.84 [0.81, 0.86]

HELICoiD 0.82 [0.79, 0.84]

CNN+HELICoiD 0.82 [0.79, 0.85]

Including Glare spatial-SVM 0.69 [0.67, 0.71]

CNN [21] 0.73 [0.71, 0.76]

spatial-SVM Processed 0.76 [0.74, 0.77]

CNN Processed 0.78 [0.76, 0.81]

HELICoiD 0.79 [0.77, 0.81]

CNN+HELICoiD 0.81 [0.80, 0.83]

3. RESULTS

Quantitative results from the leave-one-patient-out cross-validation, using both the ground truth regions that
include glare pixels and the sub-sampled masks that include only ideal quality regions that exclude glare, show
that the CNN classifier group outperformed the SVM classifier group using the average area under the curve
(AUC) of the receiver operator characteristic (ROC), as shown in Table 1 and Figure 5. The results are reported
using seven-fold cross-validation to validate on all 7 patients.

When classification is performed of only ideal quality pixels (obtained from the sub-sampled mask, see Figure
1), the results indicate that additional preprocessing of the spectral signature and addition of the HELICoiD
method and KNN filtering do not significantly improve the results compared to only using the CNN, see Figure
5. The average AUCs for the CNN groups are 0.86, 0.84, and 0.82 for the CNN, CNN with preprocessed input
data, and CNN+HELICoiD method. The average AUCs for the traditional ML groups are 0.71, 0.82, and 0.82
for the SVM+PCA+KNN without and with preprocessed input data, and HELICoiD method, respectively. The
95% confidence intervals overlap for all groups except for basic spatial SVM, as shown in Table 1. Additionally,
all methods have a similar interquartile range and median distribution, see Figure 5.

However, when the classification is performed over the entire HSI tissue area, which includes classification
of pixels that contain more noise and variability, the CNN+HELICoiD method classifies with an average AUC
of 0.81, which outperforms other methods tested. The average AUC values range from 0.69 to 0.79 for the
traditional ML groups, and the CNN alone with or without pre-processing has an average AUC of 0.78 and
0.73, respectively, see Table 1 for complete results with 95% confidence intervals. Moreover, this second scenario
corresponds to a more realistic application of HSI. In summary, from cross-validation experiments including
specular glare in the ground-truth mask, the best classification method was using the CNN with pre-processed
input as the probabilty heat maps for the HELICoiD+KNN filtering method, and using SVM+PCA+KNN heat
map instead of the CNN-generated heatmap yielded slightly lower results.

For generalization and application, HSI from five patients with SCC comprised the hold-out testing group and
were classified using the saved models that were trained and cross-validated using the 7 patient training/validation
group. Qualitative investigation of the five, testing patients was performed, classified with the both the CNN
using pre-processed input alone and the method of additional HELICoiD+KNN filtering of the pre-processed
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Figure 5: Results of inter-patient cross-validation of SCC versus normal, obtained using the leave-one-patient-
out method. Top: average AUCs reported with 95% confidence interval. Bottom: box plots with the range in
black, 75th and 25th percentile in blue, and median in red.

CNN-generated probability maps. As shown in Figure 6, the CNN+HELICoiD+KNN technique performs better
on the 5 testing patients, in agreement with the quantitative metrics from the cross-validation group. The SCC
probability heat maps are shown with binary masks depicting the uncertainty and variation in the superficial
cancer margin with depth. Additionally, the extremes in the superficial margin are overlaid on the cancer heat
maps. Depending on the tissue, as demonstrated, the margin changes by about 1 mm depending on sectioning
depth. Therefore, our qualitative results can be interpreted within the range of uncertainty of the ground truth
to provide more insight to the classification potential of machine learning methods using HSI for cancer detection.

4. CONCLUSION

In this work, we presented and quantified the combination of two state-of-the-art machine learning-based classi-
fication methods for HSI of ex-vivo head and neck SCC surgical specimens. In summary, there are two methods
for generating SCC prediction probability maps: the first uses a CNN, and the second uses a combination of
SVM+PCA+KNN. After generation of the predicted cancer probabilities on a pixel level, the probability map is
fed into a KNN filtering layer and majority voting determines the class belonging of the region of interest. There-
fore, two distinct methods are compared using a 7-fold cross-validation group to obtain quantitative evaluation
metrics. Additionally, the methods are tested on a group of HSI obtained from 5 SCC patients that underwent
serial histological sectioning to evaluate the variation in the cancer margin with penetration depth of the light
wavelengths.

The quantitative results of this paper suggest that when working with ideal quality pixels, such as the
spectral signatures generated from flat surface tissue surfaces with no glare, the CNN techniques and traditional,
regression-based spatial-spectral machine learning algorithms will perform with no significant difference. The
average AUCs for these methods using the pre-processed input data range from 0.82 to 0.86 with overlapping
confidence intervals. However, when the pixels classified contain noise, for example due to sloping of the tissue
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RGB Histology CNN Proc CNN+HELICoiD

Prediction: � Normal � SCC � High Prob. SCC

Figure 6: Representative results of binary cancer classification of the 5 testing patients. From left to right:
HSI-RGB composite; histological ground truth showing variation in cancer margins with cancer area outlined;
heat maps for cancer probability generated in two ways: 1. the CNN with pre-processed input alone, and 2.
the method of additional HELICoiD+KNN filtering of the pre-processed CNN-generated probability maps. The
extremes in the superficial cancer margin are overlaid on to the heat maps.
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edges or specular glare from completely reflected incident light, additional spectral smoothing and additional
HELICoiD+KNN filtering of the classifier improve classification results of the CNN. The top performing method
was CNN+HELICoiD+KNN with an average AUC of 0.81. These methods tested outperform the traditional
spectral-spatial machine learning methods employed in this study on the 7 patient validation group. Therefore,
the 5 patient testing group was classified with the HELICoiD+KNN method using the CNN-generated probability
map and compared to the results of the CNN-only method using pre-processed input data.

In order to test the general application of the proposed methods, HSI from five testing group patients with
SCC were classified using the models that were trained and cross-validated using the five patient group. To
qualitatively investigate these results, histological images of the 5 ex-vivo tissue specimens were obtained down
to about 0.3 mm to determine how the superficial cancer margin may change with depth. As shown in Figure 6,
the CNN+HELICoiD+KNN technique performs best on the 5 patient SCC testing group, which was the same
result obtained from the 7-fold quantitative cross-validation experiment. Additionally, it can also be seen that
the superficial cancer margin of the ex-vivo tissue specimens changes by about 1 millimeter. These results allow
interpretation of the cancer prediction probability maps with observed variation in the ground truth. However,
additional possible uncertainty may exist in the histological ground truth, for example if the angle of sectioning
is skewed from the tissue plane then the ground truth could be warped which could lead to errors that cannot
be corrected by deformable registration.

In conclusion, this investigation provides more information on the potential of hyperspectral imaging and
machine learning for the detection of head and neck cancer. The main objective of this study was to investigate the
limitations of HSI-based SCC detection, such as specular glare, noise, blurring, and tissue-edge sloping artifacts.
Additionally, another objective was to evaluate the general efficacy on example test cases with uncertainty in
the ground truth as the superficial cancer margin varies with penetration depth. All of the above factors are
necessary to explore to understand the potential of HSI in the operating room. The proposed deep learning
and machine learning methods employed to study these objectives require sufficiently large patient datasets for
training, validation, and testing. Therefore, the preliminary results of this study encourage inclusion of more
data and further exploration into the ability of HSI for cancer detection.
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