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ABSTRACT 

Breast cancer in young women is commonly aggressive, in part because the proportion of high-grade, triple-negative 
(TN) tumor is too high. There are certain limitations in the detection of biopsies or surgical specimens which only 
select part of tumor sample tissue and ignore the possible heterogeneity of tumors. In clinical practice, MRI is used for 
the diagnosis of breast cancer. MRI-based radiomics is a developing approach that may provide not only the diagnostic 
value for breast cancer but also the predictive or prognostic associations between the images and biological 
characteristics. In this work, we used radiomics methods to analyze MR images of breast cancer in 53 young women, 
and correlated the radiomics data with molecular subtypes. The results indicated a significant difference between TN 
type and non-TN type of breast cancer in young women on the radiomics features based on T2-weighted MR images. 
This may be helpful for the identification of TN type and guiding the therapeutic strategies. 

1. INTRODUCTION

Breast cancer is one of the most commonly diagnosed cancers, with an estimated 266,120 new cases of invasive 
breast cancer diagnosed in the United States alone1. Approximately 6-7% of woman diagnosed with breast cancer in 
the United States are 40 years or younger2. Young women with breast cancer face more difficulties than older woman, 
for example, a higher risk of genetic susceptibility, earlier menopause, fertile and sexual life, and so on3. Because of 
the relative low frequency of screening for early detection, young women are prone to come upon higher stage, 
symptomatic breast cancer, with has been documented to lead to worse outcomes for the patient when compared to 
older women with breast cancer 4.  

Breast cancer can be classified into subtypes, which are distinguished by different characteristics in their gene 
expression patterns 5. Molecular type of breast cancer grouped through gene expression profiling was first described 
by Perou6. Immunohistochemistry techniques then seemed quite accurate for the classification of breast cancer 
molecular phenotype, at a much lower cost than genetic expression testing with microarrays, so the Expert Panel of 
the 12th St Gallen International Breast Cancer Conference (2011) accepted a new approach to the classification of 
patients for therapeutic purposes based on the recognition of intrinsic biological subtypes 7. The classification of 
breast cancer includes four categories in terms of hormone receptor, HER2 status, and Ki-67 labeling index, taking no 
account of clinicopathologic features. Such classification of breast cancers is both simple and practical, and generates 
group-specific information that is remarkably useful in clinical ground. Identification of subtypes benefits to improve 
precision therapy and to evaluate prognosis in breast cancer patients. For instance, anti-HER2+ therapy is useful for 
breast cancer with overexpression of HER2, higher rate of radical treatment has been found in pure HER2 and 
triple-negative patients, luminal A subtype patients show significantly lower mortality rates compared to other 
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subtypes of breast cancer8, and luminal A and B phenotypes have a relatively good prognosis, whereas triple-negative 
and HER2 tumors show extremely poor prognosis and a higher recurrence and metastasis rates9.                              

At present, using imaging techniques to detect different molecular types of breast cancer has become a hot topic. 
Medical imaging in the form of mammography, ultrasound, and magnetic resonance imaging (MRI) can provide some 
information of molecular subtypes of breast cancer, for example, triple negative tumors were more frequently 
unifocal and mass-like lesion, round shape, smooth margin, and rim enhancement, and luminal A were more 
frequently irregular shape and spiculated or irregular margin10. However, all of these studies used visual assessment 
by radiologists, which had a great variability and depended almost entirely on the experience of radiologists.                                 

Recent research in the medical imaging field shows that radiomics, which is described as the high-throughput 
extraction of large amounts of medical image features from radiographic images, to be useful in biopsy, microscopy 
and even DNA analysis11. Currently, several research groups are developing radiomic “feature” sets to symbolize 
tumors. These mathematical features provide methods to characterize the size, shape, texture, intensity, margin, and 
other sides of the extracted features of nodules and lesions, with the eventual purpose of separating benign from 
malignant nodules, evaluating response to therapy, and linking imaging with genomics. Grimm et al.11 demonstrated 
that semi-automatically extracted breast MRI features are correlated with both luminal A and luminal B molecular 
subtype breast cancers. Mazurowski’s work12 used computer extracted features to detect luminal B subtype only, 
which was of great importance because differentiating between luminal A and luminal B breast cancers is critically 
crucial for treatment planning.  

Since many newly diagnosed breast cancer patients undergo breast MR imaging before final treatment, it would be a 
valuable additional diagnostic tool if molecular subtypes could be identified from medical images. In this work, we use 
radiomics features to analyze MR T2-weighted images (T2WI) and try to identify the inner correlation between 
radiomics data and molecular types in young breast cancer. MR imaging features associated with molecular subtypes 
of breast cancer may be used as an adjunct to help guide clinicians in treatment planning. 

 

2. METHODS 

2.1 Patient Population 

All methods were carried out in accordance with the approved Institutional Review Board (IRB) protocol and the 
relevant guidelines and regulations. In this retrospective study, MRI images of 53 breast cancer women, with ages 
between 27 and 40 years, an average age of 35.27 years, were reviewed.  

2.2 Patient Histological Data 

Molecule subgroup classification was based on both presence and absence of characteristic critical proteins or gene 
substitutes of tissue pathology. Breast cancers were divided into four molecule subtypes defined according to the 
following standards: luminal A (NA = 10, ER positive and/or PR positive, HER2 negative, and low/intermediate grade on 
Ki-67); luminal B (NB = 32, ER positive and/or PR positive and HER2 positive; or ER positive and/or PR positive and HER2 
negative and high grade on ki-67); HER2 (NHER2 = 4, ER negative, PR negative, and HER2 positive); and triple negative 
(NTN = 7, ER negative, PR negative, and HER2 negative). 

2.3 Image Acquisition, Processing, Segmentation and Feature Extraction                 

A complete radiomics project workflow includes the following stages: identifying a question and designing patient 
cohort, develop robust image preprocessing, segmenting the regions of interest (ROI) in the images, exacting the 
features, statistical analysis or modeling13. 
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2.3.1 Imaging Data Acquisition 

MR imaging examinations were performed with the patients in the prone position by using a GE 1.5T MRI scanners or 
two Philips 3.0T MRI scanners with breast surface coils. Axial T2-weighted images, T1-weighted images, DWI, dynamic 
enhanced images were performed. Each MR had a slice thickness of 2-5 mm, matrix of 80x80-256x256, field of view 
(FOV) of 35cm, depending on different scanners and scan sequences. 

2.3.2 Imaging Data Processing 

After the acquisition of images, all T2-weighted images were loaded into ImageJ to form a High Dynamic Range 
Imaging (HDR imaging), then HDR imaging were input into AnalyzePro 1.0 (AnalyzeDirect, Overland Park, KS) to 
perform the segmentation.  

2.3.3 Imaging Data Segmentation 

The T2-weighted MR images were segmented by a trained radiologist with 14 years of experience in radiology reading 
breast MR imaging to define the region of breast tumor (Figure 1). Region of interest of segmentation was 
independently delineated for all tumor regions in T2-weighted images, without avoiding cystic degeneration or 
necrotic areas. For manual software tools, tumors were contoured using a manual trace tool (thresholding in 3D-Slicer) 
in a slice-by-slice mode in the transverse plane. Radiologists could also observe and edit the tumor contour in the 
coronal and sagittal planes.  

Accurate segmentation is an important step of the radiomics workflow. Variation in contouring can highly affect the 
extracted feature values, which would undoubtedly influence subsequent steps in the radiomics workflow. 
Segmenting a single slice significantly improves efficiency when manual segmentation is used, but the extracted ROI 
may not represent the entire tumor, hence, we used 3D-model to perform the segmentation of the tumor. Automated 
tools can significantly affect the time it takes to segment the ROI, which is a key consideration when data from 
thousands and hundreds of patients will be used. To overcome this limitation of manual segmentation, several semi- 
and fully automated methods have been used for segmentation. Parmar14, for example, implemented a 
semiautomatic region-growing segmentation algorithm in the 3D-slicer platform and showed that this approach was 
much more reproducible than manually drawn boundaries. Owens15 evaluated the uncertainty of radiomics features 
segmented from both manual and semi-automatic segmentation due to intra-observer, inter-observer, and 
inter-software reliability. They found the fact that, using semi-automatic segmentation such as LSTK, implementers 
without formal clinical training can draw contours that are roughly comparable to manually drawn contours drew by 
formally trained physicians. Although manual segmentation requires a significant amount of time (approximately 20 
min per patient) and shows a degree of variability over time and between raters, to date, manual segmentation has 
been still considered the gold standard for analyzing volumes, and many successful radiomics studies used 
manually-delineated contours 16, 17. In our research, we performed the manual method for the segmentation since the 
number of patient was not large in the study and did not require too much labor.  

2.3.4 Radiomics Features Extraction 

Radiomics features used in the study included eight shape- and size-based features, textural features (21 features with 
13 directions), wavelet features (14 features with 8 filter sets), and two morphological features for a total of 538 
features. All of the features were described in Aerts 201418 with the exception of the morphological features. These 
two features were created by altering two previously published radiomics features19: mean tumor margin gradient and 
variance of tumor margin gradient. The tumor margin gradient was defined as the intensity gradient across the border 
between the tumor and normal tissue, calculated by finding the gradient at every pixel along the tumor side of the 
margin and the nearest non-tumor pixel. The mean and variance of these gradients were calculated and used as 
features.  
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A. MR image of triple negative (TN) breast cancer of a patient.                           

 

B. MR image of luminal B breast cancer of a patient. 

Figure 1: Segmentation using T2-weighted MR images of a 37-year-old woman with triple negative breast cancer (Fig 1A) and a 
35-year-old woman with luminal B breast cancer (Fig 1B). Segmentation provided by a trained radiologist. The lesion in the breast is 
visible on the image slice (left, red outline) and the three-dimensional (3D) visualization of the lesion (right).  

2.4 Radiomics Feature Analysis 

Patients were compared in 8 group pairs: (i) Luminal A vs.Luminal B, (ii) Luminal A vs. Triple Negative, (iii) Luminal A vs. 
Her2, (iv) Luminal B vs. Triple Negative, (v) Luminal B vs. Her2, (vi) Her2 vs. Triple Negative, (vii) Luminal A, B, and Her2 
patients vs. Triple Negative, and (viii) Luminal A and B patients vs. Her2. P values were calculated using a t-test with a 
95% confidence level to determine significance.  

3. RESULTS 

3.1 Patient Population 

53 women with the diagnose of young breast cancer (YBC) (mean age 35.27±4.06[SD], range: 27-40 years) were 
included in this study, with the molecular subtypes of luminal A, luminal B, HER2, and triple negative, accounting for 
18.87% (10/53), 60.3% (32/53), 7.5% (4/53), 13.2% (7/53), respectively. 

3.2 Feature Analysis 

The number of significant features found using the Student t-Test between various pairs of groups is shown in Table I. 
The greatest number of significant features were found when the triple negative patients were compared against the 
other patients. Wavelet features provided the majority of those features found significant. A heat map showing 
several of the p-values for several Wavelet features across several comparisons is show in Figure 2. Figure 3 shows box 
plots with the means of several of the significant features. 
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Table 1. Number of significant features for each category using a T-Test between different subtypes. 

Comparison Shape and Size GLCM Wavele
 

Morpholog
 

Total 

 Lum. A vs. Lum. B 0 0 0 0 0 

Lum. A vs. Triple 
 

1 0 22 0 23 

Lum. A vs. Her2 0 0 9 0 9 

Lum. B vs. Triple 
 

0 0 42 2 44 

Lum. B vs. Her2 0 0 1 0 1 

Her2 vs. Triple Neg. 0 0 2 0 2 

Lum. A, B & Her2 vs. 
Triple Neg. 

1 9 44 2 56 

Lum. A & B vs. Her2 0 0 1 0 1 
 
 
 

 

Figure 2. Heat map of T-Test p values (* P Value < 0.05, ** P Value < 0.01) for several comparisons using select features from the 
LLH Wavelet Statistics. MAD: Mean Absolute Deviation, RMS: Root Mean Square, STD: Standard Deviation. 

 

4. DISCUSSION 

In this study, we investigated the utility of radiomics features extracted from T2-weighted images of pretreatment MRI 
to evaluate the molecular subtypes of breast cancer in young women. To the best of our knowledge, this is the first 
work to show results for the associations between T2-weighted MRI based radiomics and molecular subtypes of breast 
cancer in young women without time series data. 

In our research, the greatest number of significant features were found when the triple negative breast cancer (TNBC) 
patients were compared against the other patients, which means that the triple negative molecular subtype is 
associated with computerized MR imaging features extracted from pre-contrast T2-weighted images.  

The definition of TNBC applies to all breast tumors that lack the expression of ER, PR and HER2, all of which are 
molecular targets of therapeutic agents. Patients with TNBC typically have a relatively poorer outcome compared with 
other breast cancer subtypes owing to an inherently aggressive clinical behavior and a lack of recognized molecular 
targets for therapy. The lack of molecular targets makes that chemotherapy is still the primary established treatment 
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option for patients with early-stage and those with advanced-stage TNBC20. The vast heterogeneity of TNBC also 
extends to the tumor immune microenvironment, which displays a full array of different levels of lymphocyte and 
monocyte infiltration and activation of inhibitory checkpoints such as PD-1/PD-L1. Demonstrating the subtype of 
breast cancer is critical for surgical and radiation planning, as well as appropriately routing patients who will benefit 
from neoadjuvant chemotherapy (NAC). Improved understanding of TNBC biology has led to increasing use of NAC.  

 

Figure 3. Box plot comparisons of the mean values for select features and groups. Horizontal blue lines indicate the 25th and 75th 
percentiles, while the red mark represents the mean. The non-outlier extremes are depicted by the whiskers. P values are shown 
for each chart. 

Since the treatment of TNBC is more difficult than the other three subtypes, it is important to identify the triple 
negative patients. If the subtypes could be predicted without the utility of biopsy, this also reduces the risk of infection 
to the patient and can decrease the time needed for diagnosis. TNBC lacks the typical suspicious 
radiologic features of breast cancer; namely irregular mass shape, spiculated margins and associated suspicious 
calcifications, so it is very difficult to make diagnosis on conventional medical imaging. Processing such radiomics 
features is without added cost, and if similar information can be achieved through the use of imaging studies that are 
already being performed, then this would be of value to patients and clinicians. 
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In terms of preprocessing steps, typical radiomic features extracted included the size of the lesion (e.g., volume, 
maximal diameter, and size of bounding box), local (e.g., roughness) and global (e.g., eccentricity) shape descriptors, 
lesion intensity (e.g., average, median, maximum, minimum, and standard deviation voxel values), margin (e.g., edge 
gradients), and texture (e.g., those based on GLCMs and wavelets)21. In this work, we use radiomics features, such as 
shape and size, GLCM, wavelet, morphology, to measure the inner characteristic of tumor. The most useful set of 
features in our study belonged to wavelet statistics, with the greatest number of statistically significant features being 
observed when Luminal A, Luminal B, and Her2 patients were grouped together and compared against triple negative 
patients. The wavelet transform is similar to the Fourier transform, which represents signals as a summation of 
sinusoidal building blocks, or basis functions. One crucial difference, however, is that the wavelet transform is 
localized in both frequency and time, while the standard Fourier transform is only localized in frequency. That is, the 
Fourier transform tells what frequencies are present in a signal, and the wavelet transform tells what frequencies are 
present and when. Wavelet features respond to image inhomogeneity from different aspects22, for example, contrast 
reflects the clarity of the image and the texture of the groove depth, entropy quantifies complexity of the image, IDM 
reflects the sharpness of the image. The representation of these features in this study indicates the TNBC are more 
likely to be heterogeneous, this can explain why TNBC lesions have more biologically proliferating, and hence have 
more voxels of different uptake that appears to be more inhomogenous. 

Our study has several limitations. One limitation of the present study was that the work was retrospective, without 
standardization process for image acquisition, including image resolution, field of view, slice thickness, and so on. Data 
from different MR scanners might increase the uncertainty in calculating features, therefore, there might be bias 
between different image sets. Second, the number of this dataset was small, this was due to the lack of young women 
with breast cancer. Even in the era of big data, good patient datasets are difficult to build. To expand radiomics 
research, larger cohort study will be necessary. Third, patients above 40 years old were not included in our study to 
make the comparative study with breast cancer patients in young women. Finally, other images, such as enhancement 
images, diffusion-weighted images, were not analysed. Radiomics features based on these images may provide 
additional value to further improve the diagnostic performance. 

5. CONCLUSION 

In this study, we proposed an MRI-based radiomics approach for distinguishing the subtypes of breast cancer. The 
method significantly improved the ability to classify triple-negative breast cancer from other molecular types of breast 
cancer in young women. Wavelet features provided the majority differential diagnostic value among those features 
found significant. The radiomics approach may be used as predictive markers for diagnosis, prognosis, and therapeutic 
planning of breast cancer in young women. 

Future work will expand the number of patients used and compare the subtype evaluation to benign disease. Other 
MRI sequences will also be included in the analysis.  
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