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Abstract—Small animal imaging provides a powerful tool to 
study cancer in animal models. To monitor therapeutic response, 
serial in vivo images are acquired at different time points. 
Accurate image registration is needed to improve the 
quantification of changes over time. However, mouse body is 
extremely flexible and deformable, mouse image registration is 
challenging. In this paper, we present a deformable image 
registration method for the whole mouse body. A non-rigid point 
matching method has been developed to align mouse bones which 
represent the posture of a mouse body. Deformation is modeled 
as a global affine transformation followed by a local B-splines 
deformation. The robust point matching method simultaneously 
estimates point correspondence and surface deformation. It does 
not need to identify and label feature correspondences. The 
method can handle complex three-dimensional surfaces with a 
large amount of points and has achieved a high computational 
efficiency. The method was tested on mouse microCT images 
acquired at different positions. The distance between the 
anatomical feature point pairs has decreased from 3.8±1.0 mm 
for manually rigid-body registration to 0.9±0.4 mm for non-rigid 
surface registration. We also demonstrated the surface matching 
method for tumor magnetic resonance images that were acquired 
in different phases of treatment. The non-rigid surface 
registration method works well for both bone and soft tissues.  
The registration method can be applied to not only small animal 
images but also human images in clinical applications.   
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I. INTRODUCTION 
Small animals including mice have been extensively used 

to study and model many human diseases [1]. Small animal 
imaging can screen the models and directly provide in vivo 
information of diseases processing and therapeutic effects. In 
order to follow up disease progression, quantify tumor growth 
and monitor biological response to therapies, images of mice at 
different time points or modalities need be aligned [2]. As a 
mouse body is quite small and very flexible, it is very difficult 
to maintain the mouse at the same position for each imaging 
session. The situation becomes more severe when considering 
mouse respiration and heart beating. Therefore, we are 
developing non-rigid image registration algorithms to match 
these images for improved quantification.  

Intensity-based registration methods have a limited capture 
range [3] and typically require a rigid transformation to get two 
volumes roughly aligned at a preprocessing step. However, 
bones contain many articulated joints which cannot be modeled 

by a simply rigid transformation. Meanwhile, bone region in an 
image volume might not have enough intensity information for 
accurate intensity-based registration. Alternatively, feature-
based surface registration could yield accurate results if the 
bone surfaces can be extracted from image volumes.  

Although thin plate splines (TPS) based point matching 
method has shown promising for this application [4], the 
method can only work on surfaces that have a limited number 
of points. We are developing B-splines based point matching 
method for improved computation efficacy. We are also testing 
this surface matching method for tissue registration such as 
tumors. 

II. METHOD 

A. B-splines point-based surface matching 
For a conventional point-based surface matching, two set of 

points X and V are sampled from both surfaces, and it is 
assumed that each point in X has a one-to-one corresponding 
point in V. The two corresponding point sets are denoted as xa 
(a=1, 2,…,N) and va (a=1,2,..N) respectively. xa or va 
represents the coordinate of point a in the volume, so it is a 
three element vector {xax, xay, xaz} .  

We define T as the spatial transformation that deforms the 
point va to match the corresponding point xa, and T(va) gives 
the absolute position of the transformed va instead of the 
displacement.  The transformation T consists of a global affine 
transformation and a local deformation. 

 ( ) ( )a a local aT v v d T vθ= + +  ( 1 ) 

θ is a 3×3 affine transformation matrix and d is a 3 
elements translation vector. Tlocal is a local deformation to 
account for non-rigid shape variation between images.  

A least square fitting method is employed to seek a spatial 
transformation T between point sets X and V by minimizing the 
following energy function: 
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The first item is the Euclidan distance between each 
corresponding points so as to match the two sets; the second 
term is a smoothness constraint defined by the second order 
spatial derivatives of the transformation. Note that the global 
affine transformation (θ, d) is a linear function of pixel 
position, and the second spatial derivative is zero, so ԡܶܮԡଶ ൌ

978-1-4244-1748-3/08/$25.00  © 2008 IEEE 2353



ԡܮ ܶԡଶ . The global affine transformation can be easily 
solved using a standard least-square scheme.   

A B-splines function is used to model the non-rigid local 
deformation. The function is defined by a control point grid Φ 
that is a uniformly lattice spaced with nx × ny × nz to cover the 
whole volume. The local deformation of point va can be written 
as a 3-D tensor product of cubic B-splines [5]  
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( ) ( ) ( ) ( )local a l m n i l j m k n
l m n
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=∑∑∑          (3) 

Where ݅ ൌ ቂ௩ೌೣೣ ቃ െ 1, ݆ ൌ ௩ೌ ൨ െ 1, ݇ ൌ ቂ௩ೌ ቃ െ 1 , ݑ ൌ௩ೌೣೣ െ ቂ௩ೌೣೣ ቃ , ݒ ൌ ௩ೌ െ ௩ೌ ൨ , ݓ ൌ ௩ೌ െ ቂ௩ೌ ቃ,  is the b-splines 
parameter defined at the grid Φ, and B represents cubic B-
splines basis function.

 
 

We used a fastest descent method to minimize the energy 
function in (2). The derivative of the transformation with 
respect to the control point at the position (p, q, r) is computed 
as 
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Here i, j, k follow the previous definition in B-splines 
deformation (3) and the derivative is nonzero only at the 
control point with position p=i+l, q=j+m, r=k+n. The spatial 
derivatives of each term in the smooth constraints have 
analogous tensor product shapes with T(va). 

B. Robust point matching for surface registration 
In general, object surfaces are extracted by segmentation of 

3D volumes, and then down sampled to get points sets in order 
to represent the surfaces. It is difficult if not impossible to 
extract exact corresponding points from two surfaces, and even 
cannot ensure point correspondence existence for some points. 
We incorporated the B-splines motion model into a robust 
point matching framework (TPS-RPM) [6].  The algorithm 
registered two point clouds by searching a thin plate splines 
(TPS) transformation without manually defined point 
correspondence. However, the method is limited by 
computational constraints from TPS whose transformation 
relates to all the points.  So we modified the method by 
modeling the registration with an explicitly defined affine 
transformation and a local b-splines deformation.   

For registering two point sets va (a=1,2,…,N) and xi, ( 
i=1,2,…M) with unknown points correspondence, the robust 
points matching method does not consider a point va is one-to-
one corresponding to a point in x, but va is related to all the 
points in x with a ratio mai subjecting to ∑ ݉ேୀଵ ൌ 1  for 
i=1,2,…M, and ∑ ݉ெୀଵ ൌ 1  for a=1,2,…,N.  In order to 
handle outlier situation, the corresponding ratio matrix M= 
{mai} is added with one extra row and column in the end as the 
outliers, the extra entry will be given a non-zero value once a 
point is identified as outlier.  If entries of Matrix M become 
either 1 or 0, the point-to-point correspondence is recovered. 

Thus, this method is a general version of the conventional 
point-based surface registration.  

As the point correspondence is given by M, the registration 
is expected to minimize the point distance based on 
correspondence M, and the energy function becomes 
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Similar to Equation (2), the energy function first evaluates 
the point distance rated by mai and constrains the 
transformation smoothness on the second order spatial 
derivatives ( ԡܶܮԡଶ ). Because the algorithm iteratively 
estimates M, the point correspondence is far from true at initial 
stage. The global affine transformation should be limited by the 
distance from identity matrix I to avoid unphysical flipping or 
folding (ԡߠ െ  ,ԡଶ). Different from TPS-RPM method [4, 6]ܫ
we found it is necessary to constrain the local b-splines 
deformation by ( ԡ ܶԡଶሻ  because a global affine 
transformation should be predominant when M is far from 
permutation matrix.  

The entropy term ∑ ∑ ݈݉݉݃ெୀଵேୀଵ  enforces the 
positivity constraints of M. The matrix M is updated by 
computing the first derivatives of the energy equation (5),  
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The constraints of M are satisfied by Sinkhorn’s method 
which iterates row and column normalization of M [6]. Once M 
is computed, va is considered to correspond to a point ∑ ݉௧ݔ௧௧்ୀଵ . As the two point sets are one-to-one corresponded, 
the problem becomes a least-square fitting with b-splines 
deformation which is described in the previous section.  
Minimization of the energy function (5) becomes two 
interlocking optimizations: the estimation of correspondence 
matrix of M and a least square fitting for the transformation.  

The parameter η specifies the degree of fuzziness of the 
corresponding matrix M. the matrix becomes more fuzzy as η 
increases; as η decreases, the correspondence matrix 
approaches a permutation matrix. The energy function is 
minimized in a determinant annealing schedule. Initial η (η0) 
depends on the scale of the image size, we starts with η0=0.5 
and assumes the deformation is less than quarter of the image 
size, so the points’ coordinates are scaled to [0, 2] at the 
beginning. Then η is linearly decreasing according to ߟ௪ ൌ0.90 · ௗߟ . The interlocking optimizations are repeated until 
convergence at each η. Final ηfinal is determined by the quality 
of extracting surface points, the better one-to-one 
correspondences the point sets have, the smaller ηfinal 

 is desired.  
The algorithm repeats the annealing scheme for maximal times 
of 100 for our dataset according to the experiences.  

The parameters β, α and λ balance between transformation 
constraints and surface matching.  Matrix M is fuzzy at high η, 
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Figure 1. Registration of point sets in blue squares to point sets  in red triangles. Registration resutls from  the proposed method are shown in (a, b, c), (a) is 
the original point sets, (b) is a intermediate result  and (c) is the final deformation of the point set. (d, e, f) are the registration results of TPS-RPM , (e) is  a 
intermediate result and (f) is the final result  indicating that portion of points were not registered.  

the transformation needs to be more rigid for global matching 
so that great parameters are expected; as η becomes smaller, a 
flexible non-rigid transformation is desired to register the two 
surfaces. The parameters are set to adaptively decrease 
following the annealing schedule.    

III. RESULTS 
In order to test the algorithm performance on recovering the 

transformation, we applied the method to 2D simulated data 
provided in [6]. Visually good point clouds matching were 
achieved for all 5 data pairs in both directions. A better 
registration was showed in Fig. 1c compared with the result 
(Fig. 1f) from TPS-RPM registration.  

Our method was conducted on tumor MR images which 
were segmented from MR images acquired before, 
immediately after and 24 hours after a novel therapy called 
photodynamic therapy. The MR images were first registered 
using a rigid-body registration method [2]. Then, the tumors 
were segmented and the surfaces were aligned using the 
proposed method. Finally, the non-rigid surface transformation 
was applied to tumor MR images. Fig. 2 demonstrated the 
registration of tumor surfaces (Fig. 2d) and the overlap of the 
rendering surfaces (Fig. 2h). The overlap ratio between two 
segmented volumes has improved from 78 ± 3% after rigid 
registration to 91 ± 2% after the non-rigid registration for total 
12 mouse experiments.  

The method was applied to mouse microCT images which 
were acquired at three different positions using a microCT 
system. The images have a resolution of 0.1×0.1×0.1mm.  We 
first manually aligned the volumes, then segmented the bones 
by a threshold (1200 unit), and finally down sampled the 
surfaces to get point lists (4800 ~ 5000 points). Our method 
succeeded in all experiments by visual inspection. The bones in 
Fig. 3b were registered to those in Fig. 3a. Fig. 3d showed the 
alignment of the bone surface after registration. We manually 
selected 5 anatomic feature point pairs from the two surfaces 
(Fig. 4a) and computed the distance between each point pair 
before and after registration. We also repeated the procedure of 
the manual registration, selection of feature point pairs for 
evaluation, and the surface registration for five times. Fig. 4b 
shows that the distance between the feature point pairs on the 
bones has improved from 3.8 ± 1.0 mm after manual 
registration to 0.9 ± 0.4 mm after the non-rigid registration.  

 

 

 

 

 

 

 

 

 

IV. CONCLUSIONS 
We developed a B-splines based non-rigid surface 

registration method to align the whole mouse body. A robust 
point matching method was developed to avoid identification 
of feature correspondence. We modeled the deformation with a 
global affine transformation followed by a local B-splines 
deformation, which made possible to explicitly constrain global 
and local transformation in the robust point matching 
framework. The local B-splines modeling and gradient based 
minimization enabled the method capable to handle complex 
surfaces with great amount of points with a high computation 
efficacy. The experiments show that the non-rigid surface 
matching method can effectively register tissue surfaces and 
bones. The method was applied to small animal images and it 
can be useful for clinical human images.  
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Figure 2. Surface registration of a tumor at different time points of treatment. (a) is the surface points of a tumor xenograft  before  treatment, and (b) 
is the surface points of the tumor 24h after the treatment, (c) is the overlap of  the two point datasets. Surface points in (b) are deformed using the 
proposed method and (d) shows the color overlapping result after the non-rigid surface registration. The bottom row is the corresponding surface 
rendering for (a, b, c, d), respectively. 

 
Figure 3. Surface registration for mouse bones in two different positions. (a) is the mouse bone from the reference volume, (b) is the bone from the 
floating volume, (c) is the overlap of the bone surfaces before registration, and (d) is the overlap of bone surfaces after the surface registration 
indicating better alignment of the bone structures. 
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Figure 4. Distance of corresponding anatomic feature points before and after registration.  (a) is the five manually selected anatomical feature points 
(1-5) on the both surfaces. The distances between corresponding points before and after registration were computed and compared in (b). The selection 
of feature points and the surface registration were repeated for five times. The error bars show the mean and standard deviation of the distance for each 
feature point. After the non-rigid surface registration, the bones are better registered. 
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