
  

 

Abstract— Hyperspectral imaging (HSI) is a relatively new 

modality in medicine and can have many potential applications.   

In this study, we developed label-free hyperspectral imaging for 

tumor margin assessment. HSI data, hypercube (x,y,λ), consists 

of a series of images of the same field of view that are acquired 

at different wavelengths. Every pixel in the hypercube has an 

optical spectrum. We collected surgical tissue specimens from 

16 human subjects who underwent head and neck (H&N) 

cancer surgery. We acquired both HSI, autofluorescence 

images, and fluorescence images with 2-NBDG and proflavine 

from the specimens. Digitized histologic slides were examined 

by an H&N pathologist. We developed image preprocessing 

and classification methods for HSI data and differentiate 

cancer from benign tissue. The hyperspectral imaging and 

classification method was able to distinguish between cancer 

and normal tissue from oral cavity with an average accuracy of 

90±8%, sensitivity of 89±9%, and specificity of 91±6%. This 

study suggests that label-free hyperspectral imaging has great 

potential for surgical margin assessment in tissue specimens of 

H&N cancer patients. Further development of the imaging 

technology and quantification methods is warranted for its 

application in image-guided surgery. 

I. INTRODUCTION 

Surgery plays a major role in treating cancer and cures 

approximately 45% of all cancer patients [1, 2]. To cure a 

cancer patient by surgery, the surgeon needs remove the 

entire tumor during surgery. Unfortunately, up to 39% of 

patients who undergo surgery leave the operating room with 

positive or close margins [1, 3, 4]. It has been reported that a 

complete resection is a major predictor of patient survival 

for solid cancers [5]. Various methods have been developed 

for tumor margin assessment. Visual appearance and 

palpation are often used by a surgeon to differentiate 

between malignant and benign tissue [6]. However, this 

assessment is subjective and inaccurate. Intra-operative 

frozen tissue is commonly used to assess positive margin at 

initial surgery [7]. Small samples from the surgical bed are 

selected to evaluate presence or absence of residual cancer 

[8]. However, intraoperative frozen section diagnosis may 

suffer from errors that occur during sampling and 

histological interpretation. In addition, histological 

processing can take time [9], which is labor intensive and 
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prolongs surgery time. Fluorescence imaging guided cancer 

resection has been shown to improve the number of 

complete resections [10-16]. However, fluorescence-based 

approaches require the injection of a fluorescence imaging 

agent during surgery and the agent needs to be approved by 

the U.S. Food and Drug Administration. There are clinical 

needs to develop label-free imaging technology and 

quantification methods to aid decision making during image-

guided surgery. 

Hyperspectral imaging (HSI), also called imaging 

spectrometer [17], was developed for remote sensing and has 

been  explored for various applications by NASA [18]. With 

the advantages of acquiring two dimensional images across a 

wide range of electromagnetic spectra, HSI has been applied 

to numerous areas including vegetation and water resource 

control [19] [20], food quality and safety control [21][22],  

forensic medicine [23][24], and biomedical area [25][26]. 

Hyperspectral imaging, as a label-free imaging 

technology, does not require a contrast agent and offers great 

potential for objective assessment of cancer margins. Light 

delivered to the biological tissue undergoes scattering from 

inhomogeneity of biological structures and absorption 

primarily in hemoglobin, melanin and water as it propagates 

through tissue [27][28]. The tissue absorption, fluorescence 

and scattering characteristics change with the progression of 

diseases [29]. The reflected, fluorescent and transmitted 

lights from tissue, where are captured by HSI, carry 

diagnostic information about tissue pathology [30][31][29, 

32]. Recent advancements of hyperspectral cameras, image 

analysis methods and computational power make many 

exciting applications possible, for example, cancer detection 

and image-guided surgery [33].  

 In this study, we developed hyperspectral image 
preprocessing and quantification methods to distinguish 
tumor from benign tissue. We evaluated the hyperspectral 
imaging and classification method in surgical tissue 
specimens from head and neck cancer patients who 
underwent surgery.  

II. TISSUE COLLECTION AND IMAGING EXPERIMENTS  

A. Tissue Collection and Histological Processing.   

Human subjects who underwent head and neck cancer 

surgery at Emory University Hospitals Midtown were 

recruited into the study. The study protocol was approved by 

the Institutional Review Board of Emory University. During 

surgery, fresh surgical specimens were collected and sent to 

pathology for histological assessment. Three tissue samples, 

Label-Free Hyperspectral Imaging and Quantification Methods for 

Surgical Margin Assessment of Tissue Specimens of Cancer Patients 

Baowei Fei, Guolan Lu, Martin T. Halicek, Xu Wang, Hongzheng Zhang, James V. Little,  

Kelly R. Magliocca, Mihir Patel, Christopher C. Griffith, Mark W. El-Deiry, Amy Y. Chen  

978-1-5090-2809-2/17/$31.00 ©2017 IEEE 4041



  

i.e., i) clinically visible tumor, ii) surrounding benign tissue, 

and iii) tumor with adjacent benign tissue, were collected 

from the main specimen of each consented subject. 

Each tissue specimen was transported to the research 

laboratory for hyperspectral and fluorescence imaging 

experiments, as described in the next section. After imaging, 

the resected specimen were fixed in formalin overnight and 

then sent to pathology for the standard histologic processing 

with hematoxylin and eosin (H&E) staining. The pathologic 

slides were digitally scanned, and an experienced pathologist 

outlined the tumor border on the digitized images for 

validation 

B. Imaging System and Image Acquisition  

We used a Maestro (PerkinElmer Inc., Waltham, MA) 
imaging camera to acquire the hyperspectral dataset. This 
wavelength-scanning system consists of a Xenon light 
source, a solid-state liquid crystal filter and a 12-bit high-
resolution charge-coupled device (CCD). Details about this 
system has been described in our previous papers [34] [35]. 
This system is capable of obtaining reflectance images over 
the range of 450 - 950 nm, as well as fluorescence images 
under different excitation light sources [36].  

Each tissue specimen was scanned using the following 
steps: 1) Acquire white and dark reference hypercube before 
tissue imaging. White reference image cubes were acquired 
by placing a standard white reference board in the field of 
view. The dark reference cubes were acquired by keeping the 
camera shutter closed. 2) Acquire reflectance hyperspectral 
images of the specimen from 450-900 nm with 5 nm 
intervals. 3) Acquire fluorescence imaging with 2-NBDG 
(Cayman Chemical, Ann Arbor, Michigan) by incubating 
tissue, as described in  [37]. 4) Acquire florescence imaging 
with proflavine (Sigma Aldrich, St. Louis, Missouri) 
similarly as described in Step 3) above. 

III. QUANTITATIVE IMAGE ANALYSIS METHODS 

Fig. 2 shows the flowchart of the hyperspectral image 
processing, feature extraction, image classification, and cross 
validation steps, as described in details below. 

A.  Data Normalization  

The normalization is to remove the spectral non-

uniformity of the illumination device and the influence of 

dark current. The raw data is normalized using the following 

equation: 

𝐼𝑟𝑒𝑓𝑙𝑒𝑐𝑡 (𝜆) =
𝐼𝑟𝑎𝑤 (𝜆)− 𝐼𝑑𝑎𝑟𝑘 (𝜆)

𝐼𝑤ℎ𝑖𝑡𝑒 (𝜆) − 𝐼𝑑𝑎𝑟𝑘 (𝜆)
 

      
  Where Irefelct(λ) is the calculated normalized reflectance 

value at the wavelength λ. Iraw(λ) is the intensity value of the 

sample pixel. Iwhite(λ) and Idark(λ) are the corresponding pixel 

intensities from the white and dark reference images at the 

wavelength λ. 

B. Glare Detection and Removal  

Glare was usually from the specular reflection of the 
moist tissue surface and the region does not contain useful 
diagnostic information of the tissue. As we reported in [38], 
the glare detection method includes the three steps: i) 
Estimate the first-order derivatives of spectral curves with a 
forward difference method; ii) Calculate the standard 
deviation (SD) of each derivative curve and generate an SD 
image for each hypercube. Glare pixels show higher SD than 
normal pixels. iii) Compute the intensity histogram of each 
SD image, fit the histogram with a loglogistic distribution, 
and then experimentally identify a threshold that separates 
glare and non-glare pixels. 

C. Hyperspectral Image Classification  

The classification step is to differentiate tumor pixels 
from normal tissue. A 2-class (tumor vs. normal tissue) 
classification was performed for each pixel on the HSI image. 
To reduce computational time without reducing accuracy, 
spectral curves were averaged in non-overlapping blocks of 

 

Fig. 1. The flowchart of the hyperspectral image processing, feature extraction, classification and validation. 
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5× 5 to yield a spectral signature per block. Blocks 
containing glare pixels were excluded from classification 
process. We extract features from the hyperspectral data. The 
extracted spectral features included i) first-order derivatives 
of each spectral curve, which reflect the variations of spectral 
information across the wavelength range; ii) second-order 
derivatives of each spectral curve, which reflect the concavity 
of the spectral curve; iii) mean, stand deviation (std), and 
total reflectance at each pixel, which summarize the statistical 
characteristics of the spectral fingerprint; and iv) Fourier 
coefficients (FCs), which were initially found to be effective 
for target detection in the remote sensing field. For HSI 
classification, we implemented ensemble linear discriminant 
analysis (LDA) and support vector machine (SVM) using 
MATLAB (MathWorks, Natick, MA). After classification, 
each block on the image was assigned a label as cancerous or 
normal.  

D. Pathological Validation  

Pathologic images of the same surgical specimen were 
used to validate the cancer detection of hyperspectral image 
classification. On the digitized H&E-stained pathological 
images, the tumor margin was outlined by an experienced 
H&N pathologist. To assess the performance of the 
classification, we chose the regions of interest (ROIs), where 
the tumor or normal tissue were histopathologically 
confirmed by the pathologist, for analysis and validation. 

The accuracy, sensitivity and specificity of the classifiers 

for each patient were calculated based on the number of 

correctly classified tumor and normal pixels/blocks of all the 

specimens belonging to the patient. The accuracy, 

sensitivity, and specificity are defined in the following 

equations (TN: true negative, TP: true positive, FP: false 

positive, FN: false negative): 

Accuracy = 
TP + TN

TP + FP + FN + TN
; 

 

 

Sensitivity = 
TP

TP + FN
; Specificity = 

TN

TN + FP
 

 

IV. RESULTS  

We collected three types of tissue specimens from each of 
16 human subjects, which include: i) Clinically visible tumor 
tissue without necrosis, ii) benign tissue, and iii) Tumor with 
adjacent benign tissue at the tumor-benign interface. Fig. 2 
shows the three tissue specimens and their corresponding 
spectral curves. The three types of tissue demonstrate 
different spectral curves 

For each subject, we used the images of the tumor and 
benign tissue to train the classification algorithms and then 
used the tumor with adjacent benign tissue to test the 
performance of the classification methods. In another word, 
the classification method built the training model with the 
spectral features extracted from the tumor and benign tissue 
and was then evaluated on the tumor-benign interface tissue 
of the same patient. Using the reflectance spectra from 
hyperspectral imaging, the hyperspectral imaging method 
was able to distinguish between cancer and normal tissue of 
the oral cavity with an average accuracy of 90±8%, 
sensitivity of 89±9%, and specificity of 91±6%.  

 Fig. 3 shows the photographs of the tumor and normal 
tissue as well as the tumor with adjacent normal tissue for a 
tongue cancer patient. The corresponding histological slides, 
hyperspectral images, autofluorescence images, fluorescence 
images with the vital dyes 2-NBDG and Proflavine are also 
shown for the comparison. In our preliminary results of these 
16 human subjects, hyperspectral imaging outperformed 
autofluorescence imaging, 2-NBDG and proflavine 
fluorescence imaging for cancer detection on the surgical 
specimens. The tumor margin as assessed by the 
classification method was close to that of the histological 
image outlined by the pathologist. 

V. CONCLUSION 

Hyperspectral imaging is a label-free imaging technology 
that does not require the injection of an imaging contrast 
agent. It offers potential for noninvasive detection of cancer 
and for rapid assessment of surgical tissue specimens. Our 
quantitative image analysis methods are able to distinguish 
cancer from benign tissue in fresh surgical specimens of head 
and neck cancer patients. 

 

Fig. 2. Fresh surgical specimens of tumor, normal tissue, and tumor with adjacent normal tissue from a tongue cancer 

patient. After the hyperspectral image acquisition, the average spectral curves of the three types of tissue are shown on 

the right, indicating the difference in their spectra.     
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In this study, we used the tumor and normal tissue from 
the same patient to train the classification and then to classify 
the tumor tissue with adjacent normal tissue. This approach 
provides reliably results and high accuracy for differentiating 
tumor from normal tissue. This approach is reasonable during 
surgery because this technology is to help the surgeon to 
differentiate the tumor margin while the clinician normally 
knows the tumor core but is not certain about the boundary of 
the tumor. We are also testing another approach that uses 
different patients’ data to train the classification and then test 
the method on the new patient. This requires a large database 
and we are collecting tissue from more than 120 patients. The 
combination of the two approaches may be able to provide a 
useful tool for the surgeon to achieve complete resection and 
thus improve survival and outcome.  
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