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T2-weighted (T2W) and T2W-Fluid Attenuation Inversion Recovery (FLAIR) images are used to evaluate the
tumor and peri-tumoral edema together defined as the ‘whole tumor’ (WT) [10].

MRI tumor segmentation is used to identify the subcomponents as enhancing, necrotic or edematous tissue.
Due to heterogeneity and tissue relaxation differences in these subcomponents, multi-parametric (or multi-contrast)
MRI are often used simultaneously for accurate segmentation [11]. Manual brain tumor segmentation is a
challenging and tedious task for human experts due to the variability of tumor appearance, unclear borders of the
tumor and the need to evaluate multiple MR images with different contrasts simultaneously [12]. In addition,
manual segmentation is often prone to significant intra- and inter-rater variability [12, 13]. Hence machine learning
algorithms have been developed for tumor segmentation with high reproducibility and efficiency [12-14]. Following
the early success of CNNs [14, 15], they are used as one of the major machine learning methods to achieve great
success in clinical applications. [16, 17]. Furthermore, underlying molecular heterogeneity in gliomas makes it
difficult to predict the overall survival (OS) of GBM patients based on MR imaging alone [16, 17]. Clinical features
[5], along with MR imaging based texture features [18-20] have been used to predict the OS in GBM patients. In
this work, we utilized designed a 3D Dense-Unet for segmenting brain tumors into subcomponents and used MRI
based texture features from each of these subcomponents for survival prediction in GBM patients. The purpose of
this work was to develop a deep learning method with high prediction accuracy for brain tumor segmentation and
survival prediction that can be easily incorporated into the clinical workflow.

2. MATERIAL & METHODS

2.1 Data & Pre-Processing

2.1.1 Brain Tumor Segmentation
335 well curated multi-parametric brain MR images including T2w, T2w-FLAIR, T1w and T1C (post
contrast) from the BraTS2019 dataset were used [10, 21-24]. The dataset consisted of 259 high grade glioma (HGG)
cases and 76 low grade glioma (LGG) cases. The dataset also included three ground truth labels for a) enhancing
tumor, b) non-enhancing tumor including necrosis and c) edema. 125 cases from the BraTS2019 validation dataset
was used for evaluating the network’s performance. Pre-processing steps included N4BiasCorrection to remove the
RF inhomogeneity [25] and intensity normalization to zero-mean and unit variance.

2.1.2 Survival Analysis
259 HGG subjects were provided for the BraTS2019 Survival challenge. Information regarding age,
survival days and resection status (Gross Total Resection (GTR), Subtotal Resection (STR) or not available (NA))
were also provided. 210 subjects out of 259 subjects were selected, as the other 49 subjects were either alive or
survival days were not available (NA). The results were evaluated on 29 GTR subjects from the validation dataset.
Pre-processing steps were similar to the segmentation task including N4BiasCorrection and intensity normalization.

2.2 Network Architecture

Brain tumors contain a complex structure of sub-components and are challenging for automated tumor
segmentation. Specifically, the appearance of enhancing tumor and non-enhancing tumor are often different
between HGG and LGG. In order to simplify the complex segmentation problem, first a simple convolutional neural
network (CNN) was developed to classify HGG and LGG cases. Next, to maintain consistency with the output
results provided by the BraTS challenge, separate networks were trained to recognize and predict whole tumor
(consisting of enhancing + non-enhancing + necrosis + edema; Whole-net), tumor core (consisting of enhancing +
non-enhancing + necrosis; Core-net), and enhancing tumor (enhance-net) as binary features using 3D Dense UNets.
Each of these three networks were designed separately for HGG and LGG cases.
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The networks were designed to predict the local structures for tumors and sub-components in multi-
parametric brain MR images. The architecture of each network is shown in Fig 1. On the encoder side of the
network, multi-parametric images passed through initial convolution to generate 64 feature maps to be used in
subsequent dense blocks. Each dense block consisted of five layers as shown in Fig 1. Each layer included four
sublayers , BatchNormalization, Rectified Linear Unit (ReLu), 3D Convolution and 3D Spatial dropout that were
connected sequentially. At each layer, the input was used to generate k feature maps (referred to as growth rate and
set to 16) that were subsequently concatenated to the next input layer. The next layer was then applied to create
another k feature maps. To generate the final dense block output, inputs from each layer were concatenated with
the output of the last layer. At the end of each dense block, the input to the dense block was also concatenated to
the output of that dense block. The output of each dense block followed a skip connection to the adjacent decoder .
In addition, each dense block output went through a transition down block until the bottle neck block. With this
connecting pattern, all feature maps were reused such that every layer in the architecture received a direct
supervision signal [26]. On the decoder side, a transition up block preceded each dense block until the final
convolution layer followed by a sigmoid activation layer. Two techniques were used to circumvent the problem of
maintaining a high number of convolution layers. A) The bottle neck block (Dense block 4 in figure 1 was used
such that if the total number of feature maps from a layer exceeded the initial number of convolution maps (i.e. 64)
then it was reduced to 1/4" of the total generated feature maps in that layer. B) A compression factor of 0.75 was
used to reduce the total number of feature maps after every block in the architecture. In addition, due to the large
number of high resolution feature maps, a patch based 3D Dense-Unet approach was implemented where higher
resolution information was passed through the standard skip connections.
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Figure 1: Network Architecture
2.3 Training

2.3.1 Brain Tumor Segmentation
Three groups of three Dense-UNets were designed. Each group consisted of networks designed to segment
whole tumor, tumor core and enhancing tumor. Group 1 was trained using the dice-coefficient [27] as the loss
function while group 2 was trained with binary focal loss [28] as the loss function. Group 3 consisted of 2 sub-
groups namely, HGG group and LGG group. As the first step of group 3, a simple convolutional neural network
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was developed to separate HGG from LGG. The networks in the HGG group were trained using HGG cases only
and the networks in the LGG group used the LGG cases only.

All 335 cases from the BraTS2019 dataset were used for training the networks from group 1 and group 2.
259 HGG cases were used to train the networks from the HGG group and 76 LGG cases were used to train the
networks from the LGG group. 75% overlapping patches were extracted from the multi-parametric brain MR
images that had at least one non-zero pixel on the corresponding ground truth patch. 20% of the extracted patches
were used for in-training validation. Data augmentation steps included horizontal flipping, vertical flipping, random
rotation, and translational rotation. Down sampled data (128x128x128) was also provided in the training as an
additional data augmentation step. To circumvent the problem of data leakage, no patch from the same subject was
mixed between training and in-training validation [29, 30].

Dice loss: The Dice co-efficient determines the amount of spatial overlap between the ground truth
segmentation (X) and the network segmentation (Y)
. 21X NY|
dice loss = ————
|X1| + [Y1]
Focal loss: The focal loss was designed to address the problem of class imbalance between the foreground
and background classes during training.

ify=1
pt:{p fy

1—p  otherwise 'y’ specifies the ground truth and 'p’ € [0, 1]is the model’s predictio

Focal Loss = FL(p;) = —a;(1 —p.)Y log(p:)

HGG & LGG Classifier: 335 cases from the BraTS2019 dataset including 259 HGG cases and 76 LGG
cases were used for training the network. Data augmentation steps included horizontal flipping, vertical flipping,
random and translational rotation. The dataset was randomly shuffled and split into 60% (155 HGG and 46 LGG)
for training, 20% (52 HGG and 15 LGG) for in-training validation and 20% (52 HGG and 15 LGG) for testing.
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Figure 2: Overview of the 3rd approach using the HGG/LGG classifier.
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2.3.3 Survival Analysis

Pyradiomics (a python package) was used to extract imaging (or radiomics) features [31]. Multi contrast
MR images along with ground truth labels for each of the subcomponents were used to extract features from the
BraTS2019 training dataset. For the BraTS2019 validation dataset, the segmented labels from the three 3D Dense
UNets were used to extract features from the multi contrast MR images. 106 features were extracted for each MR
imaging sequence from the tumor subcomponents (enhancing, edema and non-enhancing tumor with necrosis).
Using these combinations, a total of 1272 features were extracted. Pywavelet, a python toolbox, was also used to
extract wavelet based features [32]. 8 wavelet components for each MR image were extracted from level 1 of
wavelet transform using coiflets (order=1) [33]. These 8 components (extracted from pywavelet toolbox) for the
four MR imaging sequences in combination with 3 tumor subcomponents were used to extract 10,176 features using
the pyradiomics package. These imaging based features were combined with additional features including surface
area, volume of tumor core, volume ofwhole tumor, ratio of tumor subcomponents to tumor core, ratio of tumor
subcomponents to tumor volume, ratio of tumor core to tumor volume, and variance of enhancing tumor with T1C.
The degree of angiogenesis was calculated by subtracting T1w and T1C in the tumor ROI, followed by a threshold
of 50%. Finally, age and resection status were added to the feature set [34]. A total of 11,468 features were extracted
combining the above features including imaging, texture and wavelet based features. Feature reduction was used to
reduce the large number of features based on the feature importance determined by the gradient boost model. This

Table 1: Selected 17 features for survival analysis

MR Imaging .
Feature No. RS Tumor Mask Pyradiomics Feature Name |Wavelet Component| Feature Category
. original_glszm_SizeZoneNon .
1 T1C Necrosis N A NA Imaging
Uniformity
2 T2w-FLAIR Enhancing |original_firstorder_Skewness NA Imaging
. original_glszm_LargeArealow .
3 T2w-FLAIR Necrosis . NA Imaging
GraylLevelEmphasis
iginal_gl SmallAreal
4 T2w-FLAIR Edema original_glszm._ rr'1a reatow NA Imaging
GraylLevelEmphasis
5 T2w Enhancing |original_firstorder_Kurtosis NA Imaging
6 T2w Enhancing |original_firstorder_Maximum NA Imaging
iginal_sh Maxi 2D
7 T2w Necrosis orlglna —Shape_Naxifum NA Imaging
DiameterRow
8 Tiw Enhancing |original_firstorder_Range NA Imaging
9 Tiw Enhancing |original_firstorder_Skewness NA Imaging
10 Tiw Edema original_firstorder_Minimum NA Imaging
11 T2w-FLAIR Enhancing |original_firstorder_Skewness Component 1 Wavelet- Imaging
. original_glszm_HighGraylLeve .
12 T1C Necrosis ) Component 2 Wavelet- Imaging
IZoneEmphasis
13 T1C Edema original_firstorder_Minimum Component 2 Wavelet- Imaging
original_glszm_GrayLevelNon
14 T1C Edema g _g —oray Component 4 Wavelet- Imaging
Uniformity
15 T1C Edema original_firstorder_Minimum Component 4 Wavelet- Imaging
original_glszm_SizeZoneNon
16 Tiw Edema g _g - Component 5 Wavelet- Imaging
Uniformity
17 Age NA NA NA Non Imaging Feature
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reduced the feature space from 11,468 to 17 features. Table 1 shows a list of the selected 17 features for survival
analysis. The 17 features were a combination of 10 Imaging features, 6 wavelet-imaging features and one non-
imaging feature. All networks were trained using Tensorflow [35] backend engines, the Keras [36] python package
and Pycharm IDEs on Tesla VV100s and/or P40 NVIDIA-GPUs.

2.4 Testing

2.4.1 HGG & LGG classifier
The classifier was evaluated on 67 cases including 52 HGGs and 15 LGGs. To generalize the network’s
performance, a 3 fold cross-validation was also performed. While we used the HGG and LGG classifier as the first
step for brain tumor segmentation, the BraTS2019 validation dataset did not include labels for HGG and LGG
precluding evaluation of classification accuracy for this initial step on the validation dataset.

2.4.2 Brain Tumor Segmentation

All the networks were tested on 125 cases from the BraTS2019 validation dataset. Patches of size 32x32x32
were provided to the networks for testing. The prediction patches were then used to reconstruct a full segmentation
volume. Each group was tested in 3 different ways including (a) non-overlapping patches, (b) 25% overlapping
patches and (c) 50% overlapping patches. At the end of testing, each group produced 3 segmentation volumes for a
particular label resulting in 9 segmentation volumes across the 3 groups. The 9 segmentation volumes were assigned
with equal weights, averaged and thresholded at 0.5 for every voxel. The same procedure was performed on whole
tumor, tumor core and enhancing tumor labels. The ensembled output of whole tumor, tumor core and enhancing
tumor were fused in a post-processing step that included the 3D connected components algorithm to improve
prediction accuracy by removing false positives.

2.4.3 Survival Analysis
The network was evaluated on 29 cases from the BraTS2019 validation dataset. The Survival analysis was
evaluated only for the GTR cases. The predicted overall survival (OS) task classified the subjects as long-survivors
(greater than 15 months), mid- survivors (between 10 to 15 months) and short-survivors (less than 10 months).

2.4.3 Uncertainty task
Uncertainty masks were also created for the 125 cases from the BraTS2019 validation dataset. The
predicted probability maps for a particular label from each group were assigned with equal weights, averaged and
scaled from 0 to 100 such that O represents the most certain prediction and 100 represents the most uncertain. In
this task, uncertain voxels were removed at multiple predetermined threshold points. The performance of the
networks was assessed based on the dice score of the remaining voxels.

3. RESULTS

3.1 HGG & LGG Classifier
The network achieved a testing accuracy of 89% and an average cross-validation accuracy of 90%.
3.2 Brain Tumor Segmentation

This method achieved average dice scores of 0.95, 0.92 and 0.90 on WT, TC and ET on the training dataset
(Table 1). It also achieved average Dice scores of 0.891, 0.809, 0.774 and sensitivity of 0.919, 0.805, 0.762
specificity of 0.99, 1, 1 for WT, TC and ET respectively on the 125 held-out cases along with Hausdorff
distances of 7.60, 8.31 and 5.49 mm respectively.
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Table 2: Mean dice scores on BraTS2019 datasets

Whole Tumor Tumor Core Enhancing Tumor
BraTS2019 Training dataset 0.951 0.930 0.892
BraTS2019 Validation dataset 0.891 0.809 0.774

Coronal Axial

Sagittal

(a) TIC (b) Ground truth  (c) Network output

Figure 3: Example segmentation result for a High Grade Glioma (HGG) (a) A post-contrast image. (b) Ground truth (c) Network output.

Color Code: Red = Enhancing tumor, Blue = tumor core (Enhancing tumor + non-enhancing tumor + necrosis), Green = Edema, Whole
tumor = Green + Blue + Red.

3.3 Survival task

The linear regression model achieved an accuracy of 44.8% and mean squared error (MSE) of 109543

(V109543 = 330 days) with median SE of 23892 and standard deviation of 266276 and spearman correlation
co-efficient of 0.203.

3.4 Uncertainty task

The networks achieved average dice_ AUC of 0.851, 0.827, 0.867 and FTP_AUC ratio of 0 for WT, TC
and ET on the BraTS2019 validation dataset.

Table 3: Uncertainty task results

Dice AUC | Dice AUC | Dice AUC FTP Ratio FTP Ratio FTP Ratio
Whole Tumor Enhancing | AUC Whole AUC AUC
tumor core tumor tumor Tumor core Enhancing
BraTS2019 0.851 0.827 0.867 0.0 0.0 0.0
Validation dataset
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4. DISCUSSION

Accurate, efficient, and reliable tumor segmentation algorithms have the potential to improve management
of GBM patients. Currently the vast majority of clinical and research efforts to evaluate response to therapy utilize
gross geometric measurements. MRI-based glioma segmentation algorithms represent a method to reduce
subjectivity and provide accurate quantitative analysis to assist in clinical decision making and improve patient
outcomes. Although the underlying task can be simply stated as a voxel-level classification, a wide variety of
automated and semi-automated tumor segmentation algorithms have been proposed. In this work, we developed a
fully automated deep learning method to classify gliomas as high grade and low-grade, segment brain tumors into
subcomponents and predict overall survival. This method was tested on the BraTS2019 validation dataset including
125 cases for the tumor segmentation task and 29 cases for the survival analysis task. A three group framework was
used, providing several advantages compared to the currently existing methods. Using three binary segmentation
networks for segmenting the tumor into its sub-components allowed us to use a simpler network for each task [14].
The networks were easier to train with reduced over-fitting [14]. Furthermore, since all three networks were trained
separately as binary segmentation problems, misclassification was greatly reduced, as demonstrated by the results
from the uncertainty task.

5. CONCLUSION

Fully automated convolutional neural networks were developed for segmenting brain tumors into their
subcomponents. This algorithm reached high performance accuracy on the BraTS2019 validation dataset. High
Dice scores, accuracy and speed of this network allows for large scale application in brain tumor segmentation. This
method can be implemented in the clinical workflow for reliable tumor segmentation, survival prediction and for
providing clinical guidance in diagnosis, surgical planning and follow up assessments.
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