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ABSTRACT  

Tumor segmentation of magnetic resonance (MR) images is a critical step in providing objective measures 

of predicting aggressiveness and response to therapy in gliomas. It has valuable applications in diagnosis, 

monitoring, and treatment planning of brain tumors. The purpose of this work was to develop a fully automated 

deep learning method for brain tumor segmentation and survival prediction. Well curated brain tumor cases with 

multi-parametric MR Images from the BraTS2019 dataset were used. A three-group framework was implemented, 

with each group consisting of three 3D-Dense-UNets to segment whole tumor (WT), tumor core (TC) and enhancing 

tumor (ET). This method was implemented to decompose the complex multi-class segmentation problem into 

individual binary segmentation problems for each sub-component. Each group was trained using different 

approaches and loss functions. The output segmentations of a particular label from their respective networks from 

the 3 groups were ensembled and post-processed. For survival analysis, a linear regression model based on imaging 

texture features and wavelet texture features extracted from each of the segmented components was implemented. 

The networks were tested on the BraTS2019 validation dataset including 125 cases for the brain tumor segmentation 

task and 29 cases for the survival prediction task. The segmentation networks achieved average dice scores of 0.891, 

0.809 and 0.774 for WT, TC and ET respectively. The survival prediction network achieved an accuracy score of 

0.44 and mean squared error (MSE) of 109543. This method could be implemented as a robust tool to assist 

clinicians in primary brain tumor management and follow-up. 

 

Keywords: Brain tumor segmentation, deep learning, BraTS, Dense-UNet, MRI, Survival prediction, imaging 
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1. INTRODUCTION 

Gliomas account for the most common malignant primary brain tumors in both pediatric and adult 

populations [1]. They arise from glial cells and are divided into low grade and high grade gliomas with significant 

differences in patient survival. Patients with aggressive high grade gliomas have life expectancies of less than 2 

years [2]. Glioblastoma (GBM) are aggressive brain tumors classified by the world health organization (WHO) as 

stage IV brain cancer [3, 4].  The overall survival for GBM patient is poor and is in the range of 12 to 15 months 

[5-7].  These tumors are typically treated by surgery, followed by radiotherapy and chemotherapy. Gliomas often 

consist of active tumor tissue, necrotic tissue and surrounding edema. Magnetic Resonance Imaging (MRI) is the 

most commonly used modality to assess brain tumors because of its superior soft tissue contrast.  It is routinely 

used in the clinical work-up of patients for brain tumor diagnosis, monitoring progression and treatment planning 

[8, 9]. Each MR sequence provides specific information about different tissue sub-components of gliomas. For 

instance, T1-weighted images with intravenous contrast highlight the most vascular regions of the tumor, called 

‘enhancing tumor’ (ET), along with the ‘tumor core' (TC) that does not involve peri-tumoral edema. Conventional 
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T2-weighted (T2W) and T2W-Fluid Attenuation Inversion Recovery (FLAIR) images are used to evaluate the 

tumor and peri-tumoral edema together defined as the ‘whole tumor’ (WT) [10].   

 

MRI tumor segmentation is used to identify the subcomponents as enhancing, necrotic or edematous tissue. 

Due to heterogeneity and tissue relaxation differences in these subcomponents, multi-parametric (or multi-contrast) 

MRI are often used simultaneously for accurate segmentation [11]. Manual brain tumor segmentation is a  

challenging and tedious task for human experts due to the variability of tumor appearance, unclear borders of the 

tumor and the need to evaluate multiple MR images with different contrasts simultaneously [12]. In addition, 

manual segmentation is often prone to significant intra- and inter-rater variability [12, 13]. Hence machine learning 

algorithms have been developed for tumor segmentation with high reproducibility and efficiency [12-14]. Following 

the early success of CNNs [14, 15], they are used as one of the major machine learning methods to achieve great 

success in clinical applications. [16, 17].  Furthermore, underlying molecular heterogeneity in gliomas makes it 

difficult to predict the overall survival (OS) of GBM patients based on MR imaging alone [16, 17]. Clinical features 

[5], along with MR imaging based texture features [18-20] have been used to predict the OS in GBM patients. In 

this work, we utilized designed a 3D Dense-Unet for segmenting brain tumors into subcomponents and used MRI 

based texture features from each of these subcomponents for survival prediction in GBM patients. The purpose of 

this work was to develop a deep learning method with high prediction accuracy for brain tumor segmentation and 

survival prediction that can be easily incorporated into the clinical workflow.  

 

2. MATERIAL & METHODS  

2.1   Data & Pre-Processing 

2.1.1 Brain Tumor Segmentation 

 335 well curated multi-parametric brain MR images including T2w, T2w-FLAIR, T1w and T1C (post 

contrast) from the BraTS2019 dataset were used [10, 21-24]. The dataset consisted of 259 high grade glioma (HGG) 

cases and 76 low grade glioma (LGG) cases. The dataset also included three ground truth labels for a) enhancing 

tumor, b) non-enhancing tumor including necrosis and c) edema. 125 cases from the BraTS2019 validation dataset 

was used for evaluating the network’s performance. Pre-processing steps included N4BiasCorrection to remove the 

RF inhomogeneity [25] and intensity normalization to zero-mean and unit variance.  

 

2.1.2 Survival Analysis 

   259 HGG subjects were provided for the BraTS2019 Survival challenge. Information regarding age, 

survival days and resection status (Gross Total Resection (GTR), Subtotal Resection (STR) or not available (NA)) 

were also provided. 210 subjects out of 259 subjects were selected, as the other 49 subjects were either alive or 

survival days were not available (NA). The results were evaluated on 29 GTR subjects from the validation dataset. 

Pre-processing steps were similar to the segmentation task including N4BiasCorrection and intensity normalization. 

 

2.2  Network Architecture 

Brain tumors contain a complex structure of sub-components and are challenging for automated tumor 

segmentation. Specifically, the appearance of enhancing tumor and non-enhancing tumor are often different 

between HGG and LGG. In order to simplify the complex segmentation problem, first a simple convolutional neural 

network (CNN) was developed to classify HGG and LGG cases. Next, to maintain consistency with the output 

results provided by the BraTS challenge, separate networks were trained to recognize and predict whole tumor 

(consisting of enhancing + non-enhancing + necrosis + edema; Whole-net), tumor core (consisting of enhancing + 

non-enhancing + necrosis; Core-net), and enhancing tumor (enhance-net) as binary features using 3D Dense UNets. 

Each of these three networks were designed separately for HGG and LGG cases.  
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The networks were designed to predict the local structures for tumors and sub-components in multi-

parametric brain MR images. The architecture of each network is shown in Fig 1. On the encoder side of the 

network, multi-parametric images passed through initial convolution to generate 64 feature maps to be used in 

subsequent dense blocks. Each dense block consisted of five layers as shown in Fig 1. Each layer included four 

sublayers , BatchNormalization, Rectified Linear Unit (ReLu), 3D Convolution and 3D Spatial dropout that were 

connected sequentially. At each layer, the input was used to generate k feature maps (referred to as growth rate and 

set to 16) that were subsequently concatenated to the next input layer. The next layer was then applied to create 

another k feature maps. To generate the final dense block output, inputs from each layer were concatenated with 

the output of the last layer. At the end of each dense block, the input to the dense block was also concatenated to 

the output of that dense block. The output of each dense block followed a skip connection to the adjacent decoder . 

In addition, each dense block output went through a transition down block until the bottle neck block. With this 

connecting pattern, all feature maps were reused such that every layer in the architecture received a direct 

supervision signal [26]. On the decoder side, a transition up block preceded each dense block until the final 

convolution layer followed by a sigmoid activation layer. Two techniques were used to circumvent the problem of 

maintaining a high number of convolution layers. A) The bottle neck block (Dense block 4 in figure 1 was used 

such that if the total number of feature maps from a layer exceeded the initial number of convolution maps (i.e. 64) 

then it was reduced to 1/4th of the total generated feature maps in that layer. B) A compression factor of 0.75 was 

used to reduce the total number of feature maps after every block in the architecture. In addition, due to the large 

number of high resolution feature maps, a patch based 3D Dense-Unet approach was implemented where higher 

resolution information was passed through the standard skip connections.  

2.3  Training 

2.3.1 Brain Tumor Segmentation 

Three groups of three Dense-UNets were designed. Each group consisted of networks designed to segment 

whole tumor, tumor core and enhancing tumor. Group 1 was trained using the dice-coefficient [27] as the loss 

function while group 2 was trained with binary focal loss [28] as the loss function. Group 3 consisted of 2 sub-

groups namely, HGG group and LGG group. As the first step of group 3, a simple convolutional neural network 

Figure 1: Network Architecture 
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was developed to separate HGG from LGG. The networks in the HGG group were trained using HGG cases only 

and the networks in the LGG group used the LGG cases only. 

All 335 cases from the BraTS2019 dataset were used for training the networks from group 1 and group 2. 

259 HGG cases were used to train the networks from the HGG group and 76 LGG cases were used to train the 

networks from the LGG group. 75% overlapping patches were extracted from the multi-parametric brain MR 

images that had at least one non-zero pixel on the corresponding ground truth patch. 20% of the extracted patches 

were used for in-training validation. Data augmentation steps included horizontal flipping, vertical flipping, random 

rotation, and translational rotation. Down sampled data (128x128x128) was also provided in the training as an 

additional data augmentation step. To circumvent the problem of data leakage, no patch from the same subject was 

mixed between training and in-training validation [29, 30].  

 

Dice loss: The Dice co-efficient determines the amount of spatial overlap between the ground truth 

segmentation (X) and the network segmentation (Y) 

𝑑𝑖𝑐𝑒 𝑙𝑜𝑠𝑠 =
2|𝑋1 ⋂ 𝑌1|

|𝑋1| + |𝑌1|
 

Focal loss: The focal loss was designed to address the problem of class imbalance between the foreground 

and background classes during training.   

𝑝𝑡 = {
𝑝                 𝑖𝑓 𝑦 = 1

 1 − 𝑝       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   ′𝒚′ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑠 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝑎𝑛𝑑  ′𝒑′ ∈ [0, 1]𝑖𝑠 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙′𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜 

𝐹𝑜𝑐𝑎𝑙 𝐿𝑜𝑠𝑠 =  𝐹𝐿(𝑝𝑡) =  −𝛼𝑡(1 − 𝑝𝑡)𝛾 log (𝑝𝑡) 

HGG & LGG Classifier: 335 cases from the BraTS2019 dataset including 259 HGG cases and 76 LGG 

cases were used for training the network. Data augmentation steps included horizontal flipping, vertical flipping, 

random and translational rotation. The dataset was randomly shuffled and split into 60% (155 HGG and 46 LGG) 

for training, 20% (52 HGG and 15 LGG) for in-training validation and 20% (52 HGG and 15 LGG) for testing.  

Figure 2: Overview of the 3rd approach using the HGG/LGG classifier. 
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2.3.3 Survival Analysis 

Pyradiomics (a python package) was used to extract imaging (or radiomics) features [31]. Multi contrast 

MR images along with ground truth labels for each of the subcomponents were used to extract features from the 

BraTS2019 training dataset. For the BraTS2019 validation dataset, the segmented labels from the three 3D Dense 

UNets were used to extract features from the multi contrast MR images. 106 features were extracted for each MR 

imaging sequence from the tumor subcomponents (enhancing, edema and non-enhancing tumor with necrosis). 

Using these combinations, a total of 1272 features were extracted. Pywavelet, a python toolbox, was also used to 

extract wavelet based features [32]. 8 wavelet components for each MR image were extracted from level 1 of 

wavelet transform using coiflets (order=1) [33]. These 8 components (extracted from pywavelet toolbox) for the 

four MR imaging sequences in combination with 3 tumor subcomponents were used to extract 10,176 features using 

the pyradiomics package. These imaging based features were combined with additional features including surface 

area, volume of tumor core, volume ofwhole tumor, ratio of tumor subcomponents to tumor core, ratio of tumor 

subcomponents to tumor volume, ratio of tumor core to tumor volume, and variance of enhancing tumor with T1C. 

The degree of angiogenesis was calculated by subtracting T1w and T1C in the tumor ROI, followed by a threshold 

of 50%. Finally, age and resection status were added to the feature set [34]. A total of 11,468 features were extracted 

combining the above features including imaging, texture and wavelet based features. Feature reduction was used to 

reduce the large number of features based on the feature importance determined by the gradient boost model. This 

Table 1: Selected 17 features for survival analysis 

 

Feature No.
MR Imaging 

sequence
Tumor Mask Pyradiomics Feature Name Wavelet Component Feature Category

1 T1C Necrosis
original_glszm_SizeZoneNon

Uniformity
NA Imaging

2 T2w-FLAIR Enhancing original_firstorder_Skewness NA Imaging

3 T2w-FLAIR Necrosis
original_glszm_LargeAreaLow

GrayLevelEmphasis
NA Imaging

4 T2w-FLAIR Edema
original_glszm_SmallAreaLow

GrayLevelEmphasis
NA Imaging

5 T2w Enhancing original_firstorder_Kurtosis NA Imaging

6 T2w Enhancing original_firstorder_Maximum NA Imaging

7 T2w Necrosis
original_shape_Maximum2D

DiameterRow
NA Imaging

8 T1w Enhancing original_firstorder_Range NA Imaging

9 T1w Enhancing original_firstorder_Skewness NA Imaging

10 T1w Edema original_firstorder_Minimum NA Imaging

11 T2w-FLAIR Enhancing original_firstorder_Skewness Component 1 Wavelet- Imaging

12 T1C Necrosis
original_glszm_HighGrayLeve

lZoneEmphasis
Component 2 Wavelet- Imaging

13 T1C Edema original_firstorder_Minimum Component 2 Wavelet- Imaging

14 T1C Edema
original_glszm_GrayLevelNon

Uniformity
Component 4 Wavelet- Imaging

15 T1C Edema original_firstorder_Minimum Component 4 Wavelet- Imaging

16 T1w Edema
original_glszm_SizeZoneNon

Uniformity
Component 5 Wavelet- Imaging

17 Age NA NA NA Non Imaging Feature
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reduced the feature space from 11,468 to 17 features. Table 1 shows a list of the selected 17 features for survival 

analysis. The 17 features were a combination of 10 Imaging features, 6 wavelet-imaging features and one non-

imaging feature.  All networks were trained using Tensorflow [35] backend engines, the Keras [36] python package 

and Pycharm IDEs on Tesla V100s and/or P40 NVIDIA-GPUs. 

 

2.4  Testing 

2.4.1 HGG & LGG classifier 

 The classifier was evaluated on 67 cases including 52 HGGs and 15 LGGs. To generalize the network’s 

performance, a 3 fold cross-validation was also performed. While we used the HGG and LGG classifier as the first 

step for brain tumor segmentation, the BraTS2019 validation dataset did not include labels for HGG and LGG 

precluding evaluation of classification accuracy for this initial step on the validation dataset.  

 

2.4.2 Brain Tumor Segmentation 

All the networks were tested on 125 cases from the BraTS2019 validation dataset. Patches of size 32x32x32 

were provided to the networks for testing. The prediction patches were then used to reconstruct a full segmentation 

volume. Each group was tested in 3 different ways including (a)  non-overlapping patches, (b) 25% overlapping 

patches and (c) 50% overlapping patches. At the end of testing, each group produced 3 segmentation volumes for a 

particular label resulting in 9 segmentation volumes across the 3 groups. The 9 segmentation volumes were assigned 

with equal weights, averaged and thresholded at 0.5 for every voxel. The same procedure was performed on whole 

tumor, tumor core and enhancing tumor labels. The ensembled output of whole tumor, tumor core and enhancing 

tumor were fused in a post-processing step that included the 3D connected components algorithm to improve 

prediction accuracy by removing false positives.  

 

2.4.3 Survival Analysis 

The network was evaluated on 29 cases from the BraTS2019 validation dataset. The Survival analysis was 

evaluated only for the GTR cases. The predicted overall survival (OS) task classified the subjects as long-survivors 

(greater than 15 months), mid- survivors (between 10 to 15 months) and short-survivors (less than 10 months). 

 

2.4.3 Uncertainty task 

  Uncertainty masks were also created for the 125 cases from the BraTS2019 validation dataset. The 

predicted probability maps for a particular label from each group were assigned with equal weights, averaged and 

scaled from 0 to 100 such that 0 represents the most certain prediction and 100 represents the most uncertain. In 

this task, uncertain voxels were removed at multiple predetermined threshold points. The performance of the 

networks was assessed based on the dice score of the remaining voxels.  

 

3. RESULTS 

3.1   HGG & LGG Classifier 

 The network achieved a testing accuracy of 89% and an average cross-validation accuracy of 90%. 
 

3.2   Brain Tumor Segmentation 

This method achieved average dice scores of 0.95, 0.92 and 0.90 on WT, TC and ET on the training dataset 

(Table 1). It also achieved average Dice scores of 0.891, 0.809, 0.774 and sensitivity of 0.919, 0.805, 0.762 

specificity of 0.99, 1, 1 for WT, TC and ET respectively on the 125 held-out cases along with Hausdorff 

distances of 7.60, 8.31 and 5.49 mm respectively.  
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Table 2: Mean dice scores on BraTS2019 datasets 

 Whole Tumor Tumor Core Enhancing Tumor 

BraTS2019 Training dataset 0.951 0.930 0.892 

BraTS2019 Validation dataset 0.891 0.809 0.774 

 

3.3   Survival task 

 The linear regression model achieved an accuracy of 44.8% and mean squared error (MSE) of 109543 

(√109543 = 330 𝑑𝑎𝑦𝑠) with median SE of 23892 and standard deviation of 266276 and spearman correlation 

co-efficient of 0.203. 

3.4   Uncertainty task 

 The networks achieved average dice_AUC of 0.851, 0.827, 0.867 and FTP_AUC_ratio of 0 for WT, TC 

and ET on the BraTS2019 validation dataset.  

Table 3: Uncertainty task results 

 Dice AUC 

Whole 

tumor 

Dice AUC 

Tumor 

core 

Dice AUC 

Enhancing 

tumor 

FTP Ratio  

AUC Whole 

tumor 

FTP Ratio  

AUC 

Tumor core 

FTP Ratio  

AUC 

Enhancing  

BraTS2019 

Validation dataset 

 

0.851 
 

0.827 
 

0.867 
 

0.0 
 

0.0 
 

0.0 
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Figure 3: Example segmentation result for a High Grade Glioma (HGG) (a) A post-contrast image. (b) Ground truth (c) Network output. 

Color Code: Red = Enhancing tumor, Blue = tumor core (Enhancing tumor + non-enhancing tumor + necrosis), Green = Edema, Whole 

tumor = Green + Blue + Red. 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/760157doi: bioRxiv preprint first posted online Sep. 8, 2019; 

http://dx.doi.org/10.1101/760157
http://creativecommons.org/licenses/by-nc-nd/4.0/


4. DISCUSSION 

Accurate, efficient, and reliable tumor segmentation algorithms have the potential to improve management 

of GBM patients. Currently the vast majority of clinical and research efforts to evaluate response to therapy utilize 

gross geometric measurements. MRI-based glioma segmentation algorithms represent a method to reduce 

subjectivity and provide accurate quantitative analysis to assist in clinical decision making and improve patient 

outcomes. Although the underlying task can be simply stated as a voxel-level classification, a wide variety of 

automated and semi-automated tumor segmentation algorithms have been proposed. In this work, we developed a 

fully automated deep learning method to classify gliomas as high grade and low-grade, segment brain tumors into 

subcomponents and predict overall survival. This method was tested on the BraTS2019 validation dataset including 

125 cases for the tumor segmentation task and 29 cases for the survival analysis task. A three group framework was 

used, providing several advantages compared to the currently existing methods. Using three binary segmentation 

networks for segmenting the tumor into its sub-components allowed us to use a simpler network for each task [14]. 

The networks were easier to train with reduced over-fitting [14]. Furthermore, since all three networks were trained 

separately as binary segmentation problems, misclassification was greatly reduced, as demonstrated by the results 

from the uncertainty task.  

 

5. CONCLUSION 

Fully automated convolutional neural networks were developed for segmenting brain tumors into their 

subcomponents. This algorithm reached high performance accuracy on the BraTS2019 validation dataset. High 

Dice scores, accuracy and speed of this network allows for large scale application in brain tumor segmentation. This 

method can be implemented in the clinical workflow for reliable tumor segmentation, survival prediction and for 

providing clinical guidance in diagnosis, surgical planning and follow up assessments. 
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