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ABSTRACT 

Squamous cell carcinoma (SCC) comprises over 90 percent of tumors in the head and neck. The diagnosis process 
involves performing surgical resection of tissue and creating histological slides from the removed tissue. Pathologists 
detect SCC in histology slides, and may fail to correctly identify tumor regions within the slides. In this study, a dataset 
of patches extracted from 200 digitized histological images from 84 head and neck SCC patients was used to train, 
validate and test the segmentation performance of a fully-convolutional U-Net architecture. The neural network 
achieved a pixel-level segmentation AUC of 0.89 on the testing group. The average segmentation time for whole slide 
images was 72 seconds. The training, validation, and testing process in this experiment produces a model that has the 
potential to help segment SCC images in histological images with improved speed and accuracy compared to the 
manual segmentation process performed by pathologists. 

INTRODUCTION 

Squamous cell carcinoma (SCC) of the head and neck is one of the most common forms of cancer and over 500,000 
cases of head neck SCC are reported worldwide each year [1]. Medical studies also indicate that SCC of the head and 
neck is often preventable and even curable if diagnosed early [1]. The diagnosis process for SCC generally involves 
constructing histology slides from extracted tissue samples and detecting regions of SCC within these slides. Due to 
the fact that early diagnosis is critical to curing cases of SCC and pathologists may make interpretive errors when 
attempting to detect SCC, machine learning techniques for medical image segmentation have the potential to benefit 
both pathologists and SCC patients by aiding in the diagnosis process. 

Previously, several fully convolutional neural network architectures, including U-Net, have been successfully applied 
to a wide variety of medical image segmentation tasks ranging from cell-nuclei segmentation to prostate cancer 
segmentation [2, 3, 4]. For example, the study that first introduced the U-Net architecture reported an IOU (intersection 
over union) of about 0.92 for a particular dataset from the 2015 ISBI Cell Tracking Challenge [2].  In addition, a recent 
study implemented fully convolutional architectures based on U-Net and ResNet to achieve an average AUC over 0.8 
for a prostate cancer segmentation task using MRI images [3].  

Our previous work focused on using a patch-based Inception V4 CNN to detect SCC using a dataset of 192 digitized 
histological images from 84 head and neck SCC patients [5]. The method we proposed in the previous work achieved 
an AUC of 0.91 on the testing group and an AUC of 0.92 on the testing group. 

The goal of this study is to evaluate the ability of fully-convolutional neural networks such as U-Net to perform cancer 
segmentation of SCC in digitized histological images of the head and neck. While the previous study used this dataset 
to train a CNN to perform patch-level SCC classification, this study focuses on the arguably more difficult problem 
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of SCC segmentation, which generates class labels at the pixel-level. This study also uses a fully-convolutional 
network that is fundamentally different from the fully-connected Inception V4 CNN used in the previous paper, and 
yields a method that not only detects SCC at the patch-level, but also identifies exact SCC regions within histological 
images with pixel-level resolution. While the U-Net architecture has been applied to a wide variety of tasks including 
cell-nuclei detection and even CT lung segmentation [6], a recent literature review suggests that this study is perhaps 
the first to investigate the application of U-Net specifically for the task of head and neck SCC segmentation. The 
robust experimental design and preliminary results of this study demonstrate that this method has the potential to aid 
pathologists in performing cancer segmentation of SCC in head and neck histological images with improved accuracy 
through a model that can segment an average slide in a matter of seconds. 

METHODOLOGY AND APPROACH 

Data Source: Head and Neck SCC Patient Tissue Samples 

As part of a joint effort with the Otolaryngology Department and the Department of Pathology and Laboratory 
Medicine at Emory University Hospital Midtown, ex-vivo tissue examples were collected from consented patients 
undergoing surgical cancer resection [7, 8]. For each patient, three different tissue samples were collected. The first 
tissue sample was extracted from a region of all tumor tissue, the second sample consisted of all normal tissue, and 
the third sample was extracted at the boundary between the normal and tumor tissue regions. In total, 200 tissue 
samples from 84 head and neck SCC patients were used and divided into separate sets for training U-Net, validating 
its performance, and testing its performance at the very end. The training set consisted of 105 slides extracted from 
45 different patients, while the validation set consisted of 29 slides extracted from a different set of 13 patients. After 
optimizing the CNN on the training set and evaluating its generalization ability using the validation set, a separate 
testing set of 66 slides obtained from 26 new patients was used to provide a final statistical evaluation of the CNN’s 
performance. This testing set was not employed until the end of the experiment in order to ensure that the final results 
provided an unbiased measurement of the CNN’s ability to generalize to unseen data. 

Histological Processing and Patch-Based Dataset 

The dataset used to implement the U-net architecture was a digitized H&N SCC dataset we previously reported [5]. 
The histology slide images were prepared using a standard procedure, where the tissue samples were fixed, embedded 
in paraffin, sectioned, and stained with haemotoxylin and eosin, and finally digitized using whole-slide scanning. In 
order to provide a labeled ground truth for the training, validation, and testing examples, a certified pathologist (James 
V. Little), outlined the cancer regions on the digital slides using Aperio ImageScope (Leica Biosystems Inc, Buffalo 
Grove, IL, USA). As outlined in the previous subsection, the data was split into separate training, validation and testing 
sets. Each slide was accompanied by a binary segmentation mask in matrix form indicating the regions of cancer and 
normal tissue. The slides were also down-sampled by a factor of four, and 512 x 512 pixel patches were extracted 
from the down-sampled slides to produce the final training, validation, and testing sets used to train and evaluate the 
CNN. The final training dataset used to train the CNN consisted of about 30,747 patches. Originally, the dataset 
consisted of far fewer patches from margin slides and from normal tissue slides, but additional patches from both 
groups were produced using data augmentation in the form of vertical and horizontal flips. The validation and test 
datasets consisted of 13,511 and 38,659 patches respectively (Table 1, Figure 2).  

 
Figure 1: Left: Sample histological slide selected from dataset. Right: Corresponding binary segmentation mask with 
cancer region outlined in red and normal tissue outlined in green. 
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Table 1: Tumor (T), normal (N), and tumor-normal (TN) whole slide images (WSI) and patches in each dataset. 

Dataset Patients T 
(WSI) 

TN 
(WSI) 

N 
(WSI) 

T 
(Patches) 

TN 
(Patches) 

N 
(Patches) 

Total 
(WSI) 

Total 
(Patches) 

Training 45 34 37 34 10929 11244 8574 105 30747 

Validation 13 4 17 8 2621 7720 3170 29 13511 

Testing 26 24 20 22 8853 24726 5080 66 38659 

 

Fully Convolutional U-Net Architecture 

The dataset discussed in the previous section was used to train, validate, and test a 2D fully-convolutional CNN based 
largely on the original U-Net architecture. The CNN was implemented using Keras, a high-level machine learning 
library that uses TensorFlow as a backend, and trained on a 1080Ti NVIDIA GPU [9-10]. The CNN was trained using 
a relatively small batch size of 4 patches and batch normalization after each activation layer. Several techniques were 
used to add regularization and improve the CNN’s generalization ability. Batch-based data augmentation, in which 
the hue, saturation, brightness, and contrast of each patch was randomly modified, was implemented to allow the 
network to learn invariance to these features. After applying these transformations each batch of patches was converted 
from the RGB space to the HSV space before being processed by the CNN during each gradient step. One of the 
advantages of using the HSV image representation for training the CNN is that this representation separates color 
information from intensity information without the CNN having to learn this separation of features from the RGB 
image representation. In order to provide additional forms of regularization to minimize overfitting, L2-regularization 
with an L2 constant of 10#$ was applied to the loss function for each convolutional layer and a dropout ratio of 5% 
was applied after each block of convolutional layers [11-12]. The architecture for the CNN was based on the original 
U-Net architecture, but contained 22 standard convolutional layers organized into 11 convolutional blocks as opposed 
to the original architecture, which only contained 18 standard convolutional layers organized into 9 convolutional 
blocks [1]. Additional convolutional blocks were used in order to produce a model with more learnable parameters 
that could generalize better to a more complex problem. In comparison, our previous work used a much deeper and 
more computationally-expensive, patch-based Inception V4 CNN with 141 standard convolutional layers. The 
Inception V4 CNN also used much smaller 101 x 101 pixel patches for training. Even with far less convolutional 
layers and a larger patch size, the CNN used in this paper is still able to learn a more complex task that yields a pixel-
level segmentation map for each patch rather than a single class label for each patch. 

 

Figure 2: Modified U-Net architecture with 22 convolutional layers. 

The CNN was optimized using the Adadelta optimizer with an initial learning rate of 1.0 and was trained for only two 
epochs due to the large size of the extensively augmented training dataset [13]. For the loss function, we used a pixel-
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by-pixel sum of the cross entropy for each pixel over the final predicted probabilities 𝑝&	and the ground truth values 
𝑝& in the final segmentation map defined in the equation below. 

𝐿 = 	 log 𝑝&
&

𝑝&	 

The original U-Net paper used a weighted cross entropy loss to account for background pixels, but we used a standard 
cross entropy loss due to the absence of background pixels in our training patches. While our loss function was similar 
to the one that the original U-Net paper reported [2], we used the Adadelta optimizer rather than the stochastic gradient 
descent optimizer used in the original paper. One advantage of using the Adadelta algorithm for optimization is that 
it uses adaptive learning rates rather than a fixed learning rate in the case of stochastic gradient descent, allowing for 
faster convergence. The use of only two epochs to train our network can be justified by the use of heavy data 
augmentation along with the fast convergence achieved by Adadelta. To achieve comparable results in practice, the 
constant learning rate for stochastic gradient descent (SGD) must be carefully tuned manually through 
experimentation, which can be quite time consuming. The Adadelta algorithm, for which we used a decay rate of 𝜌 =
0.9	and a constant of 𝜖 = 10#1, is described in Algorithm 1 below [13].  

 

Figure 3: The Adadelta algorithm used for optimizing the CNN [13]. 

Based on the procedure above, the Adadelta algorithm accumulates a weighted sum of the gradients over a fixed 
window as well as the weight updates. Each weight update is computed using a changing “learning rate” that is 
essentially the ratio of the root mean square (RMS) of the accumulated weight updates and the RMS of the 
accumulated gradient values. The RMS statistic refers the square-root of the arithmetic mean of the squares of a 
sequence of values (𝑥&), as defined in the equation below.  

𝑅𝑀𝑆 𝑥 = 	
𝑥&67

&89
𝑛

 

This adaptive learning rate eliminates the need to carefully select a starting learning rate and a learning rate schedule, 
which is often required for comparable performance when working with non-adaptive optimization such as stochastic 
gradient descent. In addition, because Adadelta takes into account the past weight updates, a separate adaptive learning 
rate is used for each parameter in the network during each weight update [13]. This property allows for the earlier 
layers with smaller gradients in the network to be updated with larger learning rates and later layers with larger 
gradients to be updated with smaller learning rates, which can allow the optimization process to converge earlier. 
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RESULTS 

The U-Net architecture was able to perform SCC segmentation on digitized histological images with a pixel-level 
AUC of 0.89 for patients in the testing group (Table 2). Based on the AUC and corresponding receiver operator 
characteristic (ROC) curve for the validation data, the optimal probability threshold for distinguishing an SCC tumor 
region from a region of normal tissue was determined to be 0.2845. This threshold was applied to both the validation 
and testing sets to produce the accuracy, sensitivity, and specificity for each set. Three sample validation slides are 
classified and presented using probability heat maps in Figure 3 to demonstrate the segmentation performance of the 
CNN. As far as classification speed is concerned, the proposed method in this paper produces an output for a given 
histological slide faster than the method in our previous paper. The Inception V4 CNN in our previous paper classified 
whole slide images in an average time of 7 minutes with a standard deviation of 9 minutes, while the U-Net CNN in 
this paper segmented whole slide images in an average time of only 72 seconds with a standard deviation of 43 
seconds. 

Table 2: SCC segmentation results at the pixel-level across the whole dataset for the validation and testing sets. 

Dataset Slides Patches AUC Accuracy Sensitivity Specificity 

Validation 35 13,511 0.80 74% 69% 78% 

Testing 66 38,659 0.89 82% 81% 82% 

 

 
Figure 4: U-Net segmentation results on representative slides from the testing set. Each set of three images contains 
the original slide image on the left, the correct SCC segmentation in the center, and the CNN’s predictions as a 
probability heat map on the right. Brighter/warmer areas correspond to higher probabilities of cancer. 
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In Table 2, the sensitivity or true positive rate, and the specificity, or true negative rate, are computed using the 
equations below. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Where 𝑇𝑃, 𝐹𝑃, 𝑇𝑁, and 𝐹𝑁 represent the number of true positives, false positives, true negatives, and false negatives 
respectively. 

The difference in performance on the validation and testing sets can be explained by the difference in the size and 
composition between the two sets. The validation set contains far fewer patches than the testing set and may not be as 
well representative of the population for this problem as the test set. While the testing set contains a roughly balanced 
number of tumor, tumor-normal, and normal whole-slide images, the validation set does not (Table 1). The specificity 
on the validation set is notably higher than the sensitivity but the two metrics are similar for the testing set, perhaps 
due to the larger size and more representative nature of the testing set. When interpreting the results, the testing results 
are, as expected, likely a better measurement of the CNN’s segmentation performance on large samples of unseen 
slides. 

DISCUSSION 

In this study, we present an extensive dataset of digitized histological slides of head and neck SCC and implement a 
version of the U-Net architecture for SCC segmentation. To the best of our knowledge, this is the first work to 
investigate the application of fully convolutional architectures, such as U-Net, to the task of SCC segmentation in 
digitized histological images from head and neck SCC cancers. Previously our group worked to use a standard, patch-
based CNN using this dataset [5]. While the patch-based CNN achieved a testing AUC of 0.92, our fully convolutional 
U-Net CNN achieved a testing AUC of 0.89. The difference in the testing AUC between the two CNNs can be 
explained by the difference in difficulty of the two tasks. We argue that the patch-level SCC detection task performed 
by the fully-connected patch-level CNN is easier than the pixel-level SCC segmentation task performed by the U-Net 
CNN in this work. In addition, when using graphical processing units (GPUs), fully-convolutional networks are more 
computationally efficient than fully-connected CNNs due to the absence of fully-connected layers. Another advantage 
of the fully-convolutional CNN in this paper is that it produces more precise outputs for an SCC slide by detecting 
SCC regions at the pixel level, rather than the patch level. The main disadvantage of the fully-convolutional network 
however is that in order to produce more precise outputs, it requires more precise training data where SCC regions 
such should be labeled accurately with pixel-level resolution. This level of precision may be more difficult or 
computationally expensive to obtain. However, if obtaining this data is not an issue, the resulting fully-convolutional 
CNN will produce more precise and possibly more useful outputs for a histology slide than a fully-connected CNN. 

While we chose to apply the commonly used U-Net architecture to the task of SCC segmentation in histological 
images, we made a few notable modifications to the training procedure described in the paper that introduced the U-
Net architecture. For example, we added additional convolutional blocks in order to increase the number of parameters 
that the network could use to learn this potentially more complex task of SCC segmentation. In order to increase the 
amount of regularization and prevent overfitting, we also used dropout along with L2 weight regularization in addition 
to heavy data augmentation. The original U-Net paper mentions the use of data augmentation but not dropout or L2 
regularization. A key difference between our training method and the training procedure in the original paper is the 
use of the Adadelta optimization algorithm as opposed to the SGD algorithm with momentum. Adadelta is an adaptive 
algorithm that maintains a separate, adaptable learning rate for each parameter in the network and eliminates the need 
for carefully selecting an initial learning rate and defining a learning rate schedule. This optimization algorithm, along 
with the use of batch-based random color augmentations, allowed us to achieve convergence in only two epochs. 

The application investigated in this paper is also significantly different from the applications described in the first U-
Net paper. While this paper investigates the application of U-Net to SCC segmentation in histological images, the 
original U-Net paper focused on the application of U-Net to various cell-segmentation tasks, some of which are 
arguably easier than SCC segmentation [2]. Our modifications to the original training procedure, such as the use of 
additional forms of regularization and a more sophisticated optimization algorithm can be justified by the relative 
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difficulty of the application that we chose to investigate. One of the key challenges that we faced in training the U-
Net architecture was constructing the dataset with the right distribution of patches from tumor, normal, and margin 
slides. Initially, the dataset consisted of thousands of patches from tumor and normal slide samples and only a few 
hundred patches from margin slides. This issue made it difficult to train the CNN because fully-convolutional 
architectures for segmentation generally perform well if both classes are present in a significant portion of the training 
images. There was also a large class imbalance between the tumor and normal patches, with most of the patches in 
the original dataset corresponding to tumor slides. In order to solve this issue, we increased the number of patches 
from margin slides artificially using data augmentation and doubled the number of patches from normal slides in order 
to match the number of tumor patches. This technique, along with the use of random color augmentation and explicit 
regularization in the form of dropout and L2-regularization terms for each convolutional layer, allowed us to limit 
overfitting and enable the network to generalize better to unseen validation and testing data. 

 

CONCLUSION 

In summary, the proposed method for implementing and training a U-Net architecture yields a CNN that is capable of 
performing SCC segmentation on digitized histological images of the head and neck with a pixel-level AUC of 0.89 
for patients in the validation set. The robust experimental design with separate sets for training, validation, and testing, 
along with the validation and testing results demonstrate that the CNN is generalizable and is capable of segmenting 
unseen SCC histological slides with a reasonable level of success.  
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