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Abstract: The performance of hyperspectral imaging (HSI) for tumor detection is investigated
in ex-vivo specimens from the thyroid (N= 200) and salivary glands (N= 16) from 82 patients.
Tissues were imaged with HSI in broadband reflectance and autofluorescence modes. For
comparison, the tissues were imaged with two fluorescent dyes. Additionally, HSI was used to
synthesize three-band RGB multiplex images to represent the human-eye response and Gaussian
RGBs, which are referred to as HSI-synthesized RGB images. Using histological ground truths,
deep learning algorithms were developed for tumor detection. For the classification of thyroid
tumors, HSI-synthesized RGB images achieved the best performance with an AUC score of 0.90.
In salivary glands, HSI had the best performance with 0.92 AUC score. This study demonstrates
that HSI could aid surgeons and pathologists in detecting tumors of the thyroid and salivary
glands.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Thyroid cancer incidence has significantly increased worldwide from 1970 to 2012, despite the
fact that mortality from thyroid cancer has decreased [1]. Surgery is the standard treatment for
thyroid cancers, and the 5-year survival rate for localized or regional thyroid cancers (excluding
anaplastic variant) is above 90% [2]. Themost commonmalignant tumor of the thyroid is papillary
thyroid carcinoma (PTC), comprising 70% of thyroid cancers, and there are several variants
of PTC, including conventional, follicular, tall-cell, and oncocytic [3]. The initial diagnosis of
thyroid tumors is with fine-needle aspiration (FNA) biopsy and histological evaluation of the
specimen [3]. Follicular tumors are another cytological type of thyroid neoplasms, which include
follicular adenoma, a benign tumor, and follicular thyroid carcinoma (FTC), the malignant
form. The requisite diagnostic criterion for follicular carcinoma versus adenoma is definitive
invasiveness; no cytological features can provide the diagnosis of FTC, so FNA is therefore
useless is making the distinction [4]. Medullary thyroid carcinoma (MTC) is a rare form of
thyroid cancer, comprising only 4% of thyroid cancers, that occurs sporadically in most cases,
but can be associated with a familial germline mutation [5].
During thyroid tumor resections, intraoperative frozen section (FS) analysis and pathologist

consultation can be useful for determining extent of the disease and, according to recent American
guidelines, may occasionally confirm malignancy and escalate treatment from partial to total
thyroidectomy [6]. For example, in thyroid tumors, 15-30% of preoperative FNA biopsies may
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be indeterminate [7]. It remains controversial in thyroid tumor surgeries whether the practice of
intraoperative FS can provide relevant diagnostic information, as it can be prone to misdiagnosis
[7]. In 4% cases with benign intraoperative FS reports, clinically significant malignancy was
found, compared to 6.8% in cases where no FS was performed [8]. This translates to a sensitivity
of 22% for identifying malignancy in patients with benign FNA [8]. In the literature, it is
suggested that the practice of intraoperative FS may lead to over or under treatment of thyroid
tumors [7].
Salivary tumors involve the salivary glands, which are a system of exocrine glands in the

mouth that produce saliva to initiate digestion. The major salivary glands are the parotid, the
submandibular, and the sublingual salivary glands [9]. The classification of benign and malignant
salivary tumors is complex, with over 20 distinct entities according to the most recent standard
proposed by the World Health Organization [9–11]. Overall, more than 80% of primary tumors
of the salivary glands arise in the parotid gland, which is the largest salivary gland [9,11].
Pleomorphic adenoma is the most common benign tumor of the salivary glands (60%) and
typically occurs in the parotid glands [11]. Mucoepidermoid carcinoma is the most common
malignant neoplasm of the parotid gland [9]. Adenoid cystic carcinoma is a malignant tumor
that can occur with equal likelihood in the submandibular and parotid glands [9]. Polymorphous
low-grade adenocarcinoma (PLGA) is a rare malignant tumor, commonly found in minor salivary
glands of the hard or soft palate [12]. In surgical resection of salivary tumors, the sensitivity of
intraoperative FS for detecting malignant parotid gland tumors with benign FNA was only 33%,
suggesting difficulty in diagnosing low grade tumors [13]. Moreover, FS for salivary tumors
carries the risk of tumor seeding and may not provide definitive diagnosis [14]. Nonetheless, the
combination of preoperative FNA and intraoperative FS leads to high diagnostic accuracy overall
for salivary tumors [15].

With the goal of image-guided surgery, hyperspectral imaging (HSI) is an emerging technology
in biomedicine that has been used for cancer detection studies both ex-vivo and in-vivo [16–18].
HSI has been explored for brain cancer detection in-vivo [19,20]. Additionally, HSI has been
proposed for laparoscopic cancer detection in colorectal surgeries with demonstrated potential
[21,22]. The ability of HSI to identify ideal transection margins for colorectal tissues has been
demonstrated after devascularization by blocking vascular anastomoses [23]. Our group reported
HSI studies of head and neck cancer using ex-vivo human surgical specimens [24–28].

In order to leave the parathyroid glands intact during surgery, Barberio et al. demonstrated that
HSI may be beneficial in detecting parathyroid glands from thyroid tissue during thyroidectomy
[29]. For surgeries of salivary tumors, one challenge is leaving the facial nerve intact, which runs
through the parotid gland and can cause facial paresis if injured. Wisotzky et al. showed that HSI
can identify the facial nerve in the parotid gland [30]. The submandibular and sublingual salivary
glands are surrounded by an anatomical variety of normal tissues in the oral cavity. Previous
work from our group has demonstrated that HSI can distinguish amongst normal tissues in the
oral cavity, such as stratified squamous epithelium, normal salivary gland, and skeletal muscle
[27].

In this large study of 82 patients, we perform tumor detection in 200 thyroid tissue specimens
from 76 patients in inter-patient testing experiments, and salivary gland tumor detection was
investigated using 16 salivary gland tissue specimens from 6 patients. This is the most
comprehensive study to date of tumor detection in thyroid and salivary glands to thoroughly
assess the feasibility of label-free, non-contact, and non-ionizing HSI-based imaging modalities
for computer aided tumor detection. The outcomes of this work will help guide future HSI
and autofluorescence studies and determine the specific benefits that HSI may offer for tumor
detection in thyroid and salivary gland tissues.
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2. Methods

In this study, ex-vivo tissue specimens from the thyroid and salivary glands were imaged with
optical imaging modalities; histological sections were prepared from the specimens for ground
truths; patients were categorized and used to train, validate, and test deep learning algorithms;
and performance was calculated to compare the methods.

2.1. Ex-vivo surgical specimen dataset

For this study, 216 surgical specimens were acquired from 82 patients undergoing routine resection
of thyroid tumors or salivary gland tumors at the Emory University Hospital Midtown, who were
recruited by giving written, informed consent to an institutional research coordinator. Table 1
shows the categorization of patients and tissue specimens. All patient data were de-identified by
the research coordinator. The Institutional Review Board (IRB) of Emory University approved
all research protocols and imaging methods. Three types of fresh, ex-vivo surgical specimens
were obtained from the surgical pathology department during clinical service. We aimed to
acquire a sample of normal tissue (N), tissue from the primary tumor (T), and a specimen of
the tumor-involved margin that contains both tumor and normal tissue (TN), all of which were
confirmed by histopathological analysis. The size of the tissue specimens was approximately
10×6×2mm on average. Additionally, the final clinical pathology report was made available
after de-identification.

Table 1. Number of patients and tissue specimens for this study. Patients are divided by cohort
and sub-group. The tissue specimens are categorized into tumor (T), tumor-normal margin (TN),

and normal (N).

Group Patients
Number of Tissue Specimens

T TN N

Thyroid Tumor Cohort
Papillary Thyroid Carcinoma (PTC) 54 41 38 59

Medullary Thyroid Carcinoma (MTC) & Insular Carcinoma 6 4 6 8

Follicular Adenoma & Carcinoma 13 14 10 12

Poorly Differentiated Carcinoma 3 4 2 2

Salivary Tumor Cohort
Parotid Gland Tumor 3 2 3 3

Other Salivary Gland Tumor 3 4 2 2

Total 82 69 61 86

The tissue samples collected for this study were categorized by an experienced pathologist
into six groups according to tumor subtype, divided into two broad cohorts: thyroid tumors and
salivary gland tumors. The thyroid tumor cohort was comprised of 200 tissue specimens from 76
patients. The malignant tumors included in this cohort were PTC (N= 54), MTC (N= 5), insular
carcinoma (N= 1), follicular carcinoma (N= 8), and poorly differentiated thyroid carcinoma
(N= 3). The benign tumors of the thyroid were follicular adenoma (N= 5). The only thyroid
cohort tissues excluded from this study were six patients with benign thyroid hyperplasia/goiter.
The cohort of salivary gland tumors was comprised of 16 tissue specimens from 6 patients.

Two patients had benign pleomorphic adenoma (N= 2) of the parotid gland. Four patients had
malignant tumors of the salivary glands: mucoepidermoid carcinoma (N= 1), salivary duct
carcinoma of the parotid gland (N= 1), PLGA of the hard palate (N= 1), and adenoid cystic
carcinoma (N= 1). The patient demographics and relevant cancer properties are shown in Table 2.
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Table 2. Patient demographics and cancer properties for the patients recruited for this study.
Intraoperative pathologist consultations (IPCs) using intraoperative frozen section (FS) analysis are

also reported.

Property Number Percentage

Demographics
Average Age (years) 49.7 -

Male 28 34%

Female 54 66%

Tobacco History 26 32%

Ethnicity
White 47 57%

Black 19 24%

Asian 6 7%

Other / Unknown 10 12%

Primary Location / Tumor Type
Thyroid Gland

Papillary Carcinoma 54 66%

Follicular Carcinoma 8 10%

Follicular Adenoma 5 6%

Medullary Carcinoma 5 6%

Poorly Differentiated Carcinoma 3 4%

Insular Carcinoma 1 1%

Salivary Gland

Pleomorphic Adenoma 2 2%

Adenoid Cystic Carcinoma 1 1%

Mucoepidermoid Carcinoma 1 1%

Adenocarcinoma (PLGA) 1 1%

Salivary Duct Carcinoma 1 1%

Cancer Stage
pT1 19 23%

pT2 19 23%

pT3 26 32%

pT4 9 11%

Avg. T Size (cm) 3 -

N+ Status 33 40%

IPC (Averages)
Surgeries with IPC 19 23%

IPC/Surgery 1.6 -

Tissues/Surgery 1.1 -

Time/IPC (min) 19.1 -

Time/Tissue (min) 17.3 -

2.2. Optical imaging modalities

To assess the ability of HSI for tumor detection, several other optical imaging modalities were
acquired for comparison, including both label-free and fluorescent dye-based methods. It was
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hypothesized that HSI would outperform fluorescence methods due to lack of sufficient target
specificity in 2-NBDG and proflavin. In the following sections, the image acquisition systems
are described for hyperspectral reflectance imaging, HSI-synthesized RGB multiplex imaging,
autofluorescence imaging, and two fluorescent dye-based imaging techniques: 2-NBDG and
proflavin.

2.2.1. Hyperspectral imaging

A CRi Maestro HS system (Perkin Elmer Inc., Waltham, Massachusetts) was used to acquire HSI
of the ex-vivo specimens. The HS system performs spectral scanning from 450 to 900 nm using a
Xenon light source and liquid crystal tunable filter (LCTF) with 5 nm spectral resolution [24,31].
The image size of the HSI was 1040×1392×91 pixels (height×width×spectral bands), and the
corresponding specimen-level spatial resolution was 25 µm per pixel. Acquisition time for an
HSI was approximately one minute.
The raw HS data (Iraw) were normalized band-by-band (λ) by subtracting the inherent dark

current of the sensor and dividing by a white reference disk for all pixels (x,y), according to the
following equation.

Inorm(x, y, λ) =
Iraw(x, y, λ) − Idark current(x, y, λ)

Iwhite ref (x, y, λ) − Idark current(x, y, λ)

The average spectral signatures after white-dark calibration are shown for all groups included
in this paper by cohort in Fig. 1.

2.2.2. HSI-Synthesized RGB images

A multiplex image is a synthetic composite image generated from a hyperspectral image. For
this work, several three-band (RGB) multiplex images were synthesized from the normalized
reflectance HSI hypercubes. The first synthetic RGB was generated from the HSI by applying a
Gaussian kernel in each color region, which is referred to as HSI-synthesized Gaussian RGB
composite. The second RGB image was constructed from human color perception curves
originally proposed by Judd et al. 1951 [32] and expanded by Vos 1978 [33]. For some
tissues, a standard RGB image was also captured for comparison by an RGB camera. Figure 2
shows a representative surgical tissue specimen of thyroid cancer from an RGB-captured camera,
HSI-synthesized Gaussian RGB multiplex, and HSI-synthesized RGB with human eye perception.
In this paper, we use HSI to simulate three-band images using RGB multiplex imaging.

However, the sensors of RGB cameras typically employ the Bayer filter [34, 35] for adapting
RGB color spectrums similar to human-eye. While the spectrum of blue and green are typically
consistent, different RGB camera sensor types have differing sensitivity to the red channel
components between 400 and 500 nm [34, 35]. Therefore, for a subset of thyroid tumor
specimens, the component of red channel response between 400 and 500 nm was manipulated to
simulate if this would have an effect on performance from the HSI-synthesized human eye RGB
multiplex images.

2.2.3. Autofluorescence imaging

Autofluorescence imaging uses the emission from intrinsic fluorophores in biological tissue that are
stimulated to fluoresce by external excitation light at specific wavelengths. The autofluorescence
images were captured using a 455 nm excitation source and a 490 nm long-pass filter using the
CRi Maestro imaging system. The long-pass filter removes any of the external light from the
source that would be reflected into the image and allows capturing images of emission-only
photons, according to Stokes’ theorem. The autofluorescence images were acquired from 500
to 720 nm in 10 nm increments to produce a hypercube with 23 spectral bands and final size of
1040×1392×23 pixels.
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Fig. 1. Average hyperspectral signatures for the tissues in the thyroid cohort (a) and the
salivary cohort (b). Subplots show the spectral signature with standard deviation for each
tissue sub type in both cohorts.

Fig. 2. A representative specimen of thyroid cancer. (a) Left to right: RGB image from
standard RGB camera; HSI-synthesized RGB human-eye multiplex image made from
reflectance HSI using Vos et al. 1978 method; HSI-synthesized Gaussian RGB multiplex
image made from reflectance HSI. (b) Spectral signatures of human-eye color perception of
red (R), green (G), and blue (B) colors proposed by Vos et al. 1978. (c) Gaussian kernels
used for generating Gaussian RGB multiplex images.

2.2.4. 2-NBDG imaging

A fluorescently tagged glucose molecule, 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-
D-glucose (2-NBDG), is a dye that targets cancer regions by producing a stronger signal measured
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from regions with higher metabolic glucose uptake. After the hyperspectral and autofluorescence
imaging methods described above, the tissues were incubated for 20 minutes in a 160 µM
2-NBDG solution (Cayman Chemical, Ann Arbor, MI, USA) at 37 degrees Celsius, quickly
rinsed in 1× phosphate buffered solution (PBS) to remove excess dye, and fluorescence imaging
was performed using the CRi Maestro. The images were acquired with the same excitation light
source at 455 nm and a long-pass filter at 490 nm from 500 to 720 nm in 10 nm increments,
producing a hypercube that has 23 spectral bands.

2.2.5. Proflavin imaging

The second dye used for fluorescence imaging was proflavin dye, which is unaffected by previous
2-NBDG dye because it has a significantly stronger optical signal comparatively. Proflavin
fluorescent dye binds to DNA and thus allows visualization of nuclear morphology, which can
improve the ability of machine learning based cancer detection methods [36]. Keratin is also
a target of proflavin dye, but this should not affect the glandular tissues involved in this study
[36,37]. For proflavin imaging, the tissue samples were incubated for 2 minutes in a 0.01%
proflavin solution (Sigma Aldrich, St. Louis, MO, USA) at room temperature, and the tissues
were rinsed in PBS before imaging with the CRi Maestro. The images were acquired with an
excitation light source at 455 nm and a long-pass filter at 490 nm from 500 to 720 nm in 10 nm
increments, producing a hypercube that contains 23 spectral bands.

2.3. Histological ground truth

The ground truths for the optical imaging modalities were achieved using digitized histology
imaging. After acquiring all images, the tissue specimens were inked at the top, bottom, left and
right edges, and back surface of the tissue to identify tissue orientation in histological sections.
Tissues were then fixed in formalin, paraffin embedded, and sectioned with a microtome, and 5
µm slices were made from the surface that was optically imaged. The first high quality slice
was kept to serve as the histology ground truth, processed with hematoxylin and eosin staining,
and digitized using whole-slide scanning at 40× objective [38]. A board-certified pathologist
with expertise in head and neck pathology annotated the tumor and normal areas on the digital
histology images.
A binary mask was made of the contoured digital histology images, which served as the

ground truth for the optical imaging modalities. Due to tissue deformations during histological
processing and slide preparation, the histology ground truth masks needed to be registered to the
gross-level optical images. The digital histology slide was registered in a semi-automated method
according to a previously established pipeline of affine, land-mark, and deformable registration
to the gross-level HSI [39,40]. The transformation was applied to the binary histology mask, and
thus a ground truth mask was generated matching the gross-level optical images of the tissue
specimens.

2.4. Experimental design

The deep learning experimental designs involved training, validation, and testing. However, for
the two cohorts, thyroid tumors (N= 76 patients) and salivary tumors (N= 6 patients), there
were different designs of the data partitioning, which was required because of the significant
differences in sample size. Therefore, the thyroid cohort is used to produce fully-independent
inter-patient results. However, the salivary cohort is used to produce intra-patient training and
testing, as described below in detail.

2.4.1. Thyroid tumors

Tumor detection of the thyroid gland was performed in fully-independent patients, divided across
5 folds. Each fold served as the fully-independent testing group, while training and validation
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was performed on the patients in the remaining 4 folds, as depicted in Fig. 3. This design was
selected to allow test-level performance metrics for all 76 thyroid patients.

Fig. 3. Schematic depicting the experimental design of fully-independent training, validation,
and testing paradigms for the 76 patient thyroid tumor cohort.

2.4.2. Salivary gland tumors

Tumor detection in the limited sample size of salivary gland tumors was performed using
intra-patient experiments. Training and validation was performed on the patients’ primary tumor
(T) and normal (N) tissues, and testing was performed on the tumor-normal (TN) margin tissue.
Figure 4 shows a schematic diagram of the training and testing paradigm. The salivary gland
cohort was separated into tumors of the parotid gland (N= 3 patients) and other salivary glands
(N= 3), as shown in Table 1.

Fig. 4. Flow diagram of intra-patient experiments of the salivary gland, with representative
tumor of the parotid gland. Intra-patient T and N tissues were used for MLP (multilayer
perceptron) training, and TN tissue specimens were used for testing. The histological ground
truth is shown with tumor contour in green. The predicted tumor heat-map overlay onto the
RGB image is shown with tumor predictions (red) and normal predictions (green). Areas of
specular glare in the heat-map are not classified, and the ground-truth tumor contour is in
blue.

2.5. Convolutional neural network

For thyroid tumor detection using 200 tissue specimens from 76 patients, a convolutional neural
network (CNN) was developed for the effective classification of thyroid tissue into tumor and
normal using a patch-based approach. The inception-v4 CNN architecture [41] was selected
because it is one of the top performing CNNs on standard tasks like Image-Net, yet has a
manageable number of hyperparameters. HSI data has several unique challenges due to data size.
Therefore, the CNN required modification for HS data pre-processed into image-patches of size
25×25×C pixels, where C represents the number of spectral bands. The first convolutional layers
were modified for the smaller patch-size necessitated by HS data, and the operating resolution in
the modular inception blocks was reduced to allow more efficient training and classification using
the CNN. Additionally, squeeze-and-excitation modules were added to increase the performance
of the CNN [42]. The implemented CNN architecture schematic is detailed in Fig. 5.

Image patches (25×25×C) were generated using a sliding window approach with a stride of 13
pixels, and the data pre-processing of HSI was performed in MATLAB (MathWorks, Inc., Natrick,
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Fig. 5. Schematic diagram of the modified inception v4 CNN architecture. The CNN
was customized to operate on the 25×25×91 patch-size selected. The receptive field size
and number of convolutional filters is shown at bottom of each inception block. The
convolutional kernel size used for convolutions is shown in italics inside each convolution
box. Squeeze-and-excitation modules were added to the CNN to increase performance.

MA). All deep learning programming was done in the TensorFlow python software package
[43] on an Ubuntu machine and accelerated with CUDA execution on Titan-XP NVIDIA GPUs
(Nvidia Corp., Santa Clara, CA). The CNN loss function was cross-entropy, the optimizer utilized
was Adadelta with an initial learning rate of 1.0, and validation performance was calculated
every 2 epochs of training data. Training each CNN model was performed for 14 epochs of
8× augmented (reflections and rotations) training data, which took about 23 hours to train.
Deployment of a fully-trained CNN model on a single GPU to classify a new thyroid tissue
specimen, which consisted of hundreds of patches, was 20± 8 seconds (avg.± st. dev.) for all
imaging modalities. The heatmaps were produced by averaging the results of overlapping pixel
regions in image-patches, since the 25×25 patches were produced with a stride of 13 pixels,
which was used to produce a smoother and less coarse final result.

2.6. Multilayer perceptron

For salivary gland tumor detection of 16 tissue specimens from 6 patients, a simplified artificial
neural network, called a multilayer perceptron (MLP), was used for intra-patient detection with
spectral information only. The MLP consisted of a 91 unit spectral vector input, a single hidden
layer with 128 neurons, and an output layer of 2 nodes (normal or tumor). This simplified MLP
was applied only to the salivary gland tumor cohort and selected to limit overfitting in this small
dataset. The salivary gland cohort was separated into parotid gland tumors (N= 3 patients) and
other salivary gland tumors (N= 3 patients).
The spectral signatures of tissue were extracted by local averaging of 5×5 pixel blocks to

reduce noise. Image pre-processing was used to remove the specular glare pixels from both
training and testing. For each group, the normal (N) and tumor-only (T) specimens’ spectra
were used for training (85%) and a subset for validation (15%), and the tumor-normal (TN)
margin tissue spectra was used for testing. For the parotid group and other salivary gland group
separately, all patients’ training samples were combined into one training group (6 tissues), and
the three TN test specimens were classified. Training was performed on the order of a few
minutes, and testing was produced in about one second.

2.7. Performance evaluation

The principal evaluation metric used for this study was area under the curve (AUC) of the receiver
operator curve (ROC). The AUC score was selected because it is robust to class imbalances
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within tissues and provides an estimate of performance at all possible thresholds of separating the
normal and tumor classes. Additionally, the accuracy, sensitivity, and specificity were calculated
and reported using the tumor probability threshold from the validation data. All results were
calculated on a tissue specimen level and averaged. Additionally, for the final testing results of
both cohorts, the 10 pixels at the edge of tissue, corresponding to 0.25mm, were excluded from
performance calculations. The imaging protocol for ex-vivo tissue specimens was performed
using a flat imaging surface, so the tissue edges created unnatural curvature where the tissue was
too thin to provide an adequate imaging signal. Statistical significance was calculated for the test
results using Student’s t-test and a 0.05 p-value threshold.

3. Results

3.1. Thyroid tumors

Tumor detection for the thyroid cohort with all cancer types combined (N= 76) demonstrated that
the HSI-synthesized RGB multiplex images generated from the HSI were the best performing
results in terms of average AUC scores with 0.89 and 0.90 for HSI-synthesized Gaussian RGB
multiplex and the HSI-synthesized human-eye RGB multiplex, respectively. HSI performed with
an average AUC score of 0.86. Full results of thyroid tumor detection by AUC score, accuracy,
sensitivity, and specificity for all imaging methods are shown in Table 3 and separated by cancer
type.
The average and median AUC scores are presented in Fig. 6(A) and (B) across all thyroid

tumor types with statistical significance. Combining all thyroid tumors, both implementations of
three-band, HSI-synthesized RGB multiplex imaging (average AUC score of 0.89 for Gaussian-
RGB multiplex and 0.90 for human-eye RGB multiplex) outperformed autofluorescence (0.85
AUC score), 2-NBDG (AUC score of 0.86), and proflavin (0.83 AUC score) to a degree of
statistical significance (all p< 0.05). Additionally, HSI-synthesized human-eye RGBmultiplexing
also significantly outperformed HSI (p< 0.05). For the PTC sub-group (N= 54), both HSI-
synthesized RGB multiplex images statistically outperformed autofluorescence, 2-NBDG, and
proflavin (all p< 0.05). For the MTC group (N= 6), both HSI-synthesized RGB multiplex images
significantly outperformed 2-NBDG and proflavin (all p< 0.05). For the follicular tumor group,
autofluorescence outperforms the other methods in AUC score, but the difference is not significant
(p> 0.05). Lastly, poorly differentiated thyroid carcinomas were classified with the highest AUC
score from HSI-synthesized human-eye RGB multiplex imaging, but not significantly (p> 0.05).

The different imaging modalities and respective probability heat-maps for tumor detection are
shown in Fig. 7 for all groups of thyroid tumors. As can be seen, HSI shows the most consistent
heat-maps around regions of specular glare, compared to the HSI-synthesized RGB multiplex
methods. As shown in Fig. 6(B), the median AUC scores show that HSI (0.95) and the two
HSI-synthesized RGB multiplex methods (0.95 and 0.96) have approximately equivalent median
performance for combined thyroid tumors.
The median AUC scores are substantially greater than the averages, which indicates that

the distribution of performance results tends to be more accurate than the average reflects.
Histogram analysis of percent difference of the HSI and HSI-synthesized RGB multiplex imaging
methods shows that HSI-synthesized RGB outperforms HSI in a relatively small number of tissue
specimens, which causes the average AUC scores for HSI-synthesized RGB multiplexing to
be greater than HSI. Figure 8(A) and (C) show the histograms of percent difference in tissues
from HSI to both Gaussian-RGB multiplex and the human-eye RGB multiplex, respectively.
Additionally, Fig. 8(B) and (D) show the tissue specimens with the largest differences in AUC
scores compared to HSI, where HSI-synthesized RGB multiplexing still works quite well.

The three-band HSI-synthesized RGB multiplex images from HSI are meant to represent RGB
imaging. However, these multiplex images are still constructed from HSI data. Standard RGB
camera sensors have different responses to the component of the red channel between 400 and
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Table 3. Performance results of the optical imaging modalities for the thyroid tumor cohort
(average±SEM). The best performing modality for each groups’ evaluation metrics is bolded.

AUC Accuracy Sensitivity Specificity

HSI

All Thyroid Tumors (N= 82) 0.86± 0.02 78± 2% 80± 3% 74± 3%

PTC (N= 54) 0.86± 0.02 76± 2% 79± 3% 71± 4%

MTC & Insular Ca. (N= 6) 0.81± 0.09 85± 5% 85± 5% 72± 11%

Follicular Ad. & Ca. (N= 13) 0.90± 0.04 80± 4% 80± 7% 82± 5%

Poorly Diff. Ca. (N= 3) 0.90± 0.08 81± 15% 73± 23% 96± 4%

Autofluorescence

All Thyroid Tumors (N= 82) 0.85± 0.02 76± 2% 83± 2% 68± 3%

PTC (N= 54) 0.81± 0.03 72± 2% 79± 3% 62± 4%

MTC & Insular Ca. (N= 6) 0.86± 0.06 80± 5% 83± 7% 78± 6%

Follicular Ad. & Ca. (N= 13) 0.95± 0.02 87± 3% 93± 3% 81± 5%

Poorly Diff. Ca. (N= 3) 0.98± 0.01 95± 1% 95± 3% 93± 1%

2-NBDG Dye

All Thyroid Tumors (N= 82) 0.86± 0.02 78± 2% 75± 3% 80± 3%

PTC (N= 54) 0.84± 0.02 76± 2% 72± 3% 79± 3%

MTC & Insular Ca. (N= 6) 0.84± 0.05 80± 5% 74± 8% 72± 10%

Follicular Ad. & Ca. (N= 13) 0.92± 0.03 84± 4% 82± 6% 89± 4%

Poorly Diff. Ca. (N= 3) 0.91± 0.08 79± 11% 81± 15% 89± 11%

Proflavin Dye

All Thyroid Tumors (N= 82) 0.83± 0.02 75± 2% 68± 3% 80± 3%

PTC (N= 54) 0.82± 0.02 73± 2% 66± 4% 77± 4%

MTC & Insular Ca. (N= 6) 0.70± 0.08 71± 4% 60± 9% 71± 8%

Follicular Ad. & Ca. (N= 13) 0.91± 0.03 81± 4% 73± 7% 93± 2%
Poorly Diff. Ca. (N= 3) 0.98± 0.01 95± 2% 91± 5% 97± 2%

HSI-synthesized
Gaussian-RGB

All Thyroid Tumors (N= 82) 0.89± 0.02 79± 2% 77± 2% 82± 3%
PTC (N= 54) 0.87± 0.02 77± 2% 76± 3% 79± 4%
MTC & Insular Ca. (N= 6) 0.95± 0.03 88± 4% 91± 4% 82± 8%

Follicular Ad. & Ca. (N= 13) 0.90± 0.02 77± 3% 67± 6% 91± 2%

Poorly Diff. Ca. (N= 3) 0.98± 0.01 94± 3% 92± 4% 95± 4%

HSI-synthesized
Human-Eye RGB

All Thyroid Tumors (N= 82) 0.90± 0.02 79± 2% 80± 2% 79± 3%

PTC (N= 54) 0.88± 0.02 78± 2% 80± 3% 76± 4%

MTC & Insular Ca. (N= 6) 0.96± 0.02 88± 3% 93± 3% 85± 6%
Follicular Ad. & Ca. (N= 13) 0.92± 0.02 76± 3% 68± 7% 86± 4%

Poorly Diff. Ca. (N= 3) 0.99± 0.01 91± 3% 92± 3% 93± 5%

Fig. 6. Average and median AUC scores from thyroid tumor detection. (a) average AUC
scores for thyroid tumor detection across all tissue specimens grouped by tumor subtype;
statistical significance (*, p< 0.05) is shown above. (b) median AUC scores of tumor subtype
detection.
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Fig. 7. Representative tissue images and corresponding classification heat-maps from all
modalities from patients with thyroid carcinoma. Columns from left to right: histology, HSI
with heat-map, HSI-synthesized Gaussian-RGB multiplex with heat-map, HSI-synthesized
human-eye RGB multiplex with heat-map, autofluorescence with heat-map, 2-NBDG dye
image with heat-map, Proflavin dye image with heat-map. Rows from top to bottom:
papillary thyroid carcinoma (PTC), medullary thyroid carcinoma (MTC), follicular thyroid
carcinoma, and poorly differentiated thyroid carcinoma. The contours in white (in heat-maps)
and green (on histology) outline the cancerous regions. Predicted tumor heat-maps range
from dark blue (predicted normal) to dark red (predicted cancer).
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Fig. 8. Differences in AUC score performance comparing HSI against HSI-synthesized
Gaussian-RGB multiplex and HSI-synthesized human-eye RGB multiplexing. (a) Histogram
of percent difference in AUC scores of tissue specimens between HSI and HSI-synthesized
Gaussian-RGB multiplex imaging. The arrows show the bins that contain the patient
specimens shown in the right panels, which are the two worst performing tissues. (b) RGB
image of tissue specimen with large difference in AUC score performance between heat-maps
produced from HSI, HSI-synthesized Gaussian multiplex, and HSI-synthesized human-eye
multiplex image. (c) Histogram of percent difference in AUC scores of tissue specimens
between HSI and HSI-synthesized human-eye RGB multiplex imaging. The arrows show the
bins that contain the patient specimens shown in the right panels, which are the two worst
performing tissues. (d) RGB image of the tissue specimen with the largest difference in
AUC score performance between heat-maps produced from HSI, HSI-synthesized Gaussian
multiplex, and HSI-synthesized human-eye multiplex image. The tumor margin is delineated
in white.

500 nm. Therefore, for fold 1 of the HSI-synthesized human-eye RGB multiplex thyroid tumor
detection, the red channel component from 400 to 500 nm was multiplied by half and by zero,
and two more CNNs were trained. The results are plotted in Fig. 9. The original human-eye
multiplex result for fold 1 using the original 400-500 nm red component was an AUC score of
0.90 for thyroid tumor detection. Completely eliminating the 400-500 nm red component (by
multiplying by zero) in human-eye multiplex still resulted in an equivalent AUC score of 0.90 for
thyroid tumor detection (p> 0.05). Lastly, an equivalent AUC score of 0.89 for thyroid tumor
detection was obtained when the 400-500 nm red component was set to half the original value for
human eye multiplexing (p> 0.05).
To further investigate how CNN methods can utilize HSI and the relevant wavelengths for

correctly predicting normal and thyroid tissues, we incorporated the gradient class-activated maps
(grad-CAM) algorithm [44]. Briefly, the method is used for tracing the most relevant gradients
from the input data to the class of interest, either normal or tumor, which is used to infer spectral
feature saliency. The mean spectral signatures and class-activated gradients were averaged for 89
tissues that were correctly classified with high AUC scores and separated into normal thyroid
and tumor (Fig. 10). As can be observed in Fig. 10(a), the salient spectral features for correctly
classifying normal thyroid tissues were from 570-700 nm. In Fig. 10(b), the most salient spectral
features for correctly classifying thyroid tumors were also in the range of 550-700 nm, with
additional bands near 500 and 750 contributing some lesser importance for classification.
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Fig. 9. AUC score results from one fold of the testing data comparing different methods
using HSI. TheHSI-synthesized RGBmultiplex images represent RGB imagingwith different
parameters. From left to right in the plot: original HSI method, 3-band Gaussian-RGB
from HSI, original HSI-synthesized human-eye RGB from HSI, human-eye RGB from HSI
synthesized with half of the 400-500 nm red component, and last the human-eye RGB from
HSI synthesized with none of the 400-500 nm red component. Values shown are average
AUC score from all tissues in one fold of testing data with 95% confidence interval error
bars.

Fig. 10. Mean spectral signatures of correctly-classified normal thyroid tissues (a) and
thyroid tumors (b). The saliency of spectral features is identified below each plot using
the grad-CAM technique. Red hues represent the most important features for correctly
predicting each tissue class, and blue color hues represent less important wavelengths for
correctly predicting each class.

3.2. Salivary gland tumors

The intra-patient tumor detection results of the salivary gland tumors cohort are separated into
parotid gland tumors and other salivary gland tumors. For parotid gland tumors, HSI was the
best performing imaging modality with an AUC score of 0.92, accuracy of 88%, sensitivity of
90%, and specificity of 79% (all differences were not significant, p> 0.05). For tumors of other
salivary glands, autofluorescence was the best performing imaging modality with an AUC score
of 0.80, accuracy of 84%, sensitivity of 77%, and specificity of 85% (all differences were not
significant, p> 0.05). The full results are shown in Table 4.
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Table 4. Performance results from all optical imaging modalities for the salivary tumor cohort,
separated by salivary gland group (average±SEM). The best performing modality for each groups’

evaluation metrics is bolded.

Group Imaging AUC Accuracy Sensitivity Specificity

Parotid
(N= 3)

HSI 0.92± 0.04 88± 4% 90± 4% 79± 7%
Autofluorescence 0.60± 0.30 87± 2% 99± 1% 26± 26%

2-NBDG Dye 0.77± 0.12 87± 2% 97± 3% 31± 31%

Proflavin Dye 0.64± 0.32 89± 2% 96± 2% 54± 27%

Gaussian-RGB 0.66± 0.15 81± 5% 97± 2% 38± 24%

Human-Eye 0.72± 0.02 78± 15% 95± 5% 35± 20%

Other Salivary
(N= 3)

HSI 0.59± 0.14 76± 12% 55± 29% 85± 15%

Autofluorescence 0.80± 0.14 84± 10% 77± 13% 85± 6%

2-NBDG Dye 0.52± 0.08 76± 11% 49± 28% 84± 16%

Proflavin Dye 0.62± 0.10 77± 11% 60± 30% 78± 22%

Gaussian-RGB 0.45± 0.03 70± 10% 62± 31% 57± 43%

Human-Eye 0.78± 0.15 84± 9% 76± 12% 87± 6%

4. Discussion

The results of this extensive study suggest that label-free HS-based imaging and autofluorescence
does indeed outperform the two fluorescent dye-based imaging methods tested here for thyroid
tumor detection, but not to a significant degree. Interestingly, we discovered that HSI-synthesized
RGB multiplex imaging significantly outperforms all imaging methods tested for thyroid tumor
detection, including HSI and autofluorescence (p< 0.05). For salivary tumor detection, HSI
performs best in the parotid gland and autofluorescence in performs best in other salivary glands,
but no difference was significant. As can be observed in Fig. 6(B), one main conclusion from
this work is that with sufficiently large datasets, many different optical imaging modalities can be
used to create deep learning algorithms for tumor detection with median AUC scores of 0.90 and
upwards. This phenomenon can be seen specifically for the thyroid tumors combined cohort.
The experiments for the thyroid cohort and salivary gland cohort were processed separately

in different ways because of vastly different numbers of tissue samples collected. The thyroid
tumor cohort experiment was investigated in fully-independent testing patients because 200 tissue
specimens from 76 patients were available. The salivary tumor cohort was comprised of only
16 tissues from 6 patients, so intra-patient experiments were performed using tumor-only and
normal specimens for training and testing on tumor-normal margin tissues.
The hypothesis that HSI-based methods would outperform fluorescent dye-based methods

was upheld in the thyroid tumor combined category, largely because it was supported in the
PTC group (N= 54), which comprises 71% of cases. However, it was not supported for MTC,
FTC, and poorly differentiated thyroid carcinoma groups (all p values were not significant).
Additionally, the thyroid tumor detection results show that HSI-synthesized human-eye RGB
multiplex imaging made from HSI statistically outperforms reflectance-based HSI. Despite
differences in average AUC scores, the median values are equivalent around 0.95 (see Fig. 6).
Exploring this phenomenon further in Fig. 8, it was demonstrated that only a few tissues differ
between the HSI and HSI-synthesized RGB multiplex modalities. Moreover, the probability
heat-maps from HSI seem to provide more consistent classification around regions of significant
specular glare compared to the HSI-synthesized multiplex methods (Fig. 7). These results are
consistent with a previous study from our group that was limited to only 11 thyroid patients, in
which RGB composite images (AUC score of 0.95) also outperformed HSI (AUC score of 0.92)
[24].
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The purpose of the three-band HSI-synthesized multiplex images synthesized from HSI was to
represent standard RGB imaging from a standard camera. However, these multiplex images are
still constructed from HSI data. Additionally, there are differences in the spectral responses to
the red channel component from 400-500 nm in standard RGB camera sensors. The impact of
this red component value was studied, and no effect was observed in AUC score by altering these
values for HSI-synthesized human-eye RGB multiplexing. To provide physical intuition for this
conclusion, the grad-CAM method reveals that the most salient spectral features for correctly
classifying normal thyroid tissues were from 570-700 nm, well above this range. Future studies
are required to investigate if a standard RGB camera would indeed outperform HSI directly.
Additionally, future work is needed to capture more thyroid tumor HSI data with higher spatial
and spectral resolution HS cameras. It is possible that the spectral resolution of 5 nm in this
LCTF spectral-scanning HS system was inadequate for this study.

5. Conclusion

In conclusion, we present an extensive study using 216 tissue samples from 82 patients to evaluate
the performance of HSI for tumor detection of the thyroid and salivary glands. For comparison to
HSI, the tissues were imaged with label-free autofluorescence and two fluorescent dyes, 2-NBDG
and proflavin dye. Additionally, HSI-synthesized three-band multiplex images, representing
the human-eye response and Gaussian RGBs, were synthesized from HSI. Several CNNs were
developed for tumor detection that perform with median AUC scores of 0.90 and higher for
all imaging modalities in combined thyroid tumors. Investigating each group specifically, our
results suggest that HSI-synthesized human-eye RGB multiplexing can classify thyroid tumors
significantly better than HSI. In salivary glands, label-free HSI and autofluorescence may offer
the best performance for tumor detection. This study demonstrates that HSI could aid surgeons
and pathologists in tumor detection in glands.
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