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 ABSTRACT 
 

Cardiac magnetic resonance (CMR) imaging is considered the standard imaging modality for volumetric analysis of the 
right ventricle (RV), an especially important practice in the evaluation of heart structure and function in patients with 
repaired Tetralogy of Fallot (rTOF). In clinical practice, however, this requires time-consuming manual delineation of the 
RV endocardium in multiple 2-dimensional (2D) slices at multiple phases of the cardiac cycle. In this work, we employed 
a U-Net based 2D convolutional neural network (CNN) classifier in the fully automatic segmentation of the RV blood 
pool. Our dataset was comprised of 5,729 short-axis cine CMR slices taken from 100 individuals with rTOF. Training of 
our CNN model was performed on images from 50 individuals while validation was performed on images from 10 
individuals. Segmentation results were evaluated by Dice similarity coefficient (DSC) and Hausdorff distance (HD). Use 
of the CNN model on our testing group of 40 individuals yielded a median DSC of 90% and a median 95th percentile HD 
of 5.1 mm, demonstrating good performance in these metrics when compared to literature results. Our preliminary results 
suggest that our deep learning-based method can be effective in automating RV segmentation. 

Keywords: Tetralogy of Fallot, Cardiac magnetic resonance imaging, Deep learning, Convolutional neural network 
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1. INTRODUCTION 
 

Tetralogy of Fallot (rTOF) is a congenital heart defect that occurs in about 1 in 2,518 babies born in the United States, and 
is the most common cyanotic congenital heart disease.1 Following surgical repair of the condition, patients commonly 
suffer from pulmonary regurgitation, which can contribute to significant enlargement of the right ventricle (RV), making 
regular postoperative assessment crucial in curtailing the development of major adverse cardiovascular events.2 

Cardiac magnetic resonance imaging (CMR) is an imaging modality that is particularly well-suited for evaluation of 
repaired Tetralogy of Fallot, providing clear images that allow accurate and reproducible measurement of RV size and 
ejection fraction (EF) to quantify ventricular function.3 These measures are especially important, as severe ventricular 
dilation and dysfunction have been found to be useful factors in outcome prediction for patients with rTOF.4  Unfortunately, 
taking these measurements in clinical practice can be time-consuming, requiring manual tracing of the endocardium across 
multiple phases of the cardiac cycle.5 

Convolutional neural networks (CNNs) are a class of deep learning algorithms. The U-Net architecture has been shown to 
be especially useful in the localization of structures in biomedical images.6 Using a U-Net based CNN to perform this 
simple but tedious delineation task has the potential to save the time for clinicians who perform the current labor-intensive 
standard of practice. The objective of this study is to investigate the feasibility of CNN-based automatic segmentation of 
the RV endocardium on short-axis cine CMR images of patients with rTOF. 
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2. METHODS 
 

2.1 Tetralogy of Fallot dataset 

This study included images with a resolution of 256×256 pixels from 100 individuals (age, 18.0 ± 8.5 years (range, 7-53 
years); 58 males, 42 females) with rTOF who had been enrolled in a prospective study between April 2005 and March 
2008 across 14 centers participating in the German Competence Network for Congenital Heart Disease. Short-axis images 
of the heart for volumetric analysis were obtained via a balanced steady-state free-precession gradient-echo sequence with 
retrospective ECG gating. The standardized CMR protocol used within the network has been described in more detail in 
previously published works.7 The dataset was divided randomly into groups for training (N= 50; including 2,958 images), 
validation (N=10; including 480 images), and testing (N=40; including 2,291 images). One patient in the training data had 
previously received a pulmonary valve replacement, resulting in metal-induced artifacts near the region of interest for 
those images. 

Delineation of the RV endocardium was performed by cardiologists on images of the heart at end-diastole (ED) and end-
systole (ES), as well as on a number of images that correspond to time points between ED and ES. After manual annotation, 
a total of 5,729 unique images were available for use with the 2D-CNN classifier based on U-Net in MATLAB 2019a 
(MathWorks Inc., Natick, MA). Pixel intensities for each image were normalized to a range of [0,1]. 
 

 
Figure 1. Example cardiologist annotated RV endocardium contour on short-axis cine CMR. 

 
2.2 Convolutional neural network  

The U-Net architecture consists of a contracting path, a bottleneck, and an expansion path. The contracting path is 
composed of several blocks, each of which apply two 3×3 convolutional layers followed by a 2×2 max pooling layer. Each 
contraction block in the path will output to the next, doubling the number of feature maps in the process, until reaching the 
bottleneck, which mediates between contraction and expansion, applying two 3×3 convolutional layers before a 2×2 up-
convolution layer. Each expansion block consists of two 3×3 convolutional layers followed by a 2×2 upsampling layer.  
 
Skip connections concatenate feature maps from contraction blocks to the corresponding expansion blocks to aid in 
reconstruction of the segmented image. Only pixels in each probability map with values over 0.5 were used to create the 
final prediction. 
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Figure 2. The U-Net architecture for the proposed RV segmentation model. 
 

2.3 Image post-processing 

Because each image contains blood pools which do not correspond to the RV, only the largest continuous area predicted 
by the CNN was evaluated with the aforementioned metrics in order to eliminate false positives. After selection of this 
area, the prediction mask underwent morphological closing using a disk of a 3-pixel radius as the morphological structuring 
element. 

2.4 Evaluation metrics 

Our segmentation results were evaluated primarily using DSC, a measure of overlap between two areas.8 DSC is given by 
Equation 1, where M represents the manually drawn contour and P represents the prediction produced by the CNN. 

𝐷𝑆𝐶 = % &∩(
& ) (

            (1) 

Additionally, Hausdorff Distance (HD) was calculated as another measure of the CNN’s performance. HD is the maximum 
distance of a set to the nearest point of another set, as given by equation 2, where p and m are the set of points along the 
perimeters of P and M, respectively, and d(., .) represents the Euclidean distances from one set of points to the other.9 

𝐻𝐷 = max	{max0∈&	min4∈(	𝑑 𝑝,𝑚 ,max4∈(	min0∈&	𝑑 𝑚, 𝑝 }          (2) 

 
3. RESULTS 

 
3.1 Optimal CNN parameters 

Our CNN was trained for 18 epochs with the Dice similarity coefficient (DSC) serving as the loss function. Optimal 
hyperparameters were determined to be a batch size of 12, an encoder depth of 3, and an initial learning rate of 1e-4 with 
a learning rate drop factor of 0.3 applied every 3 epochs. 

3.2 Image categorization 

Images were categorized into phases by the areas of their respective manual contours. Within each slice of the short-axis 
CMR, the contour with the largest area was defined as occurring at ED, the contour with the smallest area was defined as 
occurring at ES, and the remaining contours were categorized as mid-phase, occurring during either diastole or systole. 
Images from the superior third of the heart were defined as basal slices, while images from the middle and inferior third 
were defined as mid-ventricle and apical slices, respectively. 
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3.3 Final segmentation 

An overall median DSC of 0.894 and an overall median 95th percentile HD of 5.5 mm were obtained on the validation 
dataset of 10 patients using our method. Performance on our testing dataset of 40 patients was comparable, yielding an 
overall median DSC of 0.898 and an overall median 95th percentile HD of 5.1 mm. 
 

Table 1.  Evaluation metrics for RV segmentation on the test group. 

 DSC (%) HD95 (mm) 
Median Mean ± Std Median Mean ± Std 

End-Diastole 
Basal 91 79 ± 25 5.5 10.1 ± 11.1 
Mid-Ventricle 90 82 ± 21 5.5 8.9 ± 9.0 
Apical 92 84 ± 17 5.1 8.8 ± 9.2 

Mid-Phase 
Basal 90 80 ± 23 4.9 9.1 ± 10.4 
Mid-Ventricle 91 82 ± 20 4.7 9.0 ± 9.4 
Apical 91 81 ± 23 4.9 8.5 ± 9.0 

End-Systole 
Basal 87 74 ± 26 5.4 11.9 ± 13.0 
Mid-Ventricle 88 76 ± 27 5.5 9.7 ± 11.1 
Apical 81 71 ± 27 6.2 10.8 ± 9.6 

Overall  90 80 ± 23 5.1 9.4 ± 10.1 
 
 

 
 

Figure 3. Distribution of DSC results of RV segmentation by the U-Net-based CNN on the test group. Boxplots have been 
generated for each combination of two categories: cardiac cycle phase (End-Diastole, Mid-Phase, End-Systole) and slice level 
of the heart (Basal, Mid-Ventricle, Apical). 
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Our method performs worst on images taken at ES, especially at the apex of the heart. This poor performance at apical ES 
images may be linked to partial obstruction of the RV blood pool by myocardium as the heart contracts. The presence of 
the right atrium in basal slices of patients with severe dilation of the RV also appears to present a challenge. 

 

 
Figure 4. Segmentation results of 3 representative test group patients. Left column: short-axis cine CMR with cardiologist 
annotation overlaid. Middle column: binary ground truth mask. Right column: CNN prediction. 

 
4. DISCUSSION 

 
In this paper, we evaluated a fully automatic method for RV segmentation of short-axis cine CMR images by a U-Net 
model. We demonstrated that a single CNN is able to learn useful features for segmenting the RV on images from a diverse 
patient group. Despite the challenging anatomical and developmental variances in our dataset, we have obtained results 
comparable to those found in the literature, suggesting that our proposed automatic method is capable of performing this 
task accurately across different age groups. 

While all patients in the dataset display abnormal cardiac anatomy, all suffer from the same condition. The implications 
of this similitude present a concern that the model may have overfitted to the training pathology. However, the impact of 
this limitation was most likely mitigated by the large variability in levels of severity among the patients. A dataset 
containing a variety of healthy and abnormal hearts could produce a more generalizable model. 

One other major limitation of this study was the use of only images that were positive for the presence of the RV blood 
pool. As such, the use of our current method would require the selection of the slices of each CMR that need to be 
segmented. Future work to improve and further automate this step would explore the introduction of additional networks 
to discern which CMR slices do or do not contain the RV blood pool in view. 
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5. CONCLUSION 

 
We developed a deep learning-based method for automatic segmentation of the right ventricle on CMR images. Though 
the problem of heart chamber segmentation has been tackled a number of times, automatic segmentation of the right 
ventricle in particular is still a challenge.10-12 Other studies have approached this problem using similar methods as the one 
presented, but many share the same dataset of healthy adult patients, and still others use a dataset containing only a few 
patients.13-17 Our dataset is unique in not only its larger size, but also its inclusion of children and adolescents as well as 
adults, all of whom present with cardiac pathology. All of the mentioned factors have been included in this paper to yield 
a more general and realistic result for RV segmentation, and the confounding factors have been retained in the dataset for 
objectivity. Nonetheless, the results presented in this paper are comparable with state-of-the-art methods. The CNN-based 
method may provide a useful tool for clinical applications.  
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