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ABSTRACT  

Hyperspectral imaging (HSI) is a promising optical imaging technique for cancer detection. However, quantitative methods 

need to be developed in order to utilize the rich spectral information and subtle spectral variation in such images. In this 

study, we explore the feasibility of using wavelet-based features from in vivo hyperspectral images for head and neck 

cancer detection. Hyperspectral reflectance data were collected from 12 mice bearing head and neck cancer. Catenation of 

5-level wavelet decomposition outputs of hyperspectral images was used as a feature for tumor discrimination. A support 

vector machine (SVM) was utilized as the classifier. Seven types of mother wavelets were tested to select the one with the 

best performance. Classifications with raw reflectance spectra, 1-level wavelet decomposition output, and 2-level wavelet 

decomposition output, as well as the proposed feature were carried out for comparison. Our results show that the proposed 

wavelet-based feature yields better classification accuracy, and that using different type and order of mother wavelet 

achieves different classification results. The wavelet-based classification method provides a new approach for HSI 

detection of head and neck cancer in the animal model.  
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1. INTRODUCTION 

Hyperspectral imaging (HSI) has been investigated for cancer detection on both in vivo1-7 and ex vivo tissue8-13. There are 

abundant information in hyperspectral data, but the traditional statistic-based classification methods are not very efficient 

with raw hyperspectral data14, 15. For classification tasks using spectra data from hyperspectral images, feature extraction 

is necessary. Feature extraction methods based on the Fourier transformation (FT) and tensor decomposition were 

previously explored1, 16. Fourier analysis, being an effective feature extraction method, decomposes a signal into cosine 

waves of different frequencies. Similar to some extent, wavelet transformation (WT) decomposes signal into shifted and 

scaled version of a mother wavelet. However, because of the variety of mother wavelets, WT can serve as a more flexible 

feature extraction method, and has the potential to dig deeper information than other methods. Wavelet transformation has 

been employed in many hyperspectral imaging applications such as denoising17, 18, image compression19, anatomy 

detection20, image fusion21, dimensional reduction22, and feature extraction14, 23-25. It decomposes data and extracts 

approximate and detailed information, which enhances the discrimination of subtle differences among spectra.  

This work is to investigate the feasibility of discrete wavelet transformation (DWT) as a feature extraction method for 

hyperspectral images of head and neck cancer detection. We explore three types of wavelet-based features, i.e., the 
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approximation output of 1-level DWT, the approximation output of 2-level DWT, and the catenation of all the outputs of 

a 5-level DWT. A tumor-bearing animal model is utilized in this study, and support vector machine (SVM) is used for 

classifications with raw data and wavelet-based features.  

 

2. METHODS 

2.1 Animal Model 

The dataset used in this experiment includes 12 HSI data from 12 mice with head and neck tumors. We used the HNSCC 

cell line M4E to initiate the tumor. The M4E cells were transfected of pLVTHM vector so that they contained green 

fluorescence protein (GFP), which was later used to generate the reference images for tumor detection. The experimental 

details about the animal experiments were reported in our previous papers 3, 26-31. 

2.2 Hyperspectral imaging system 

The camera used to capture hyperspectral images was a spectral-scanning CRI system (Perkin Elmer Inc., Waltham, 

Massachusetts), containing a fiber-optic lighting system (Cermax-type, 300-Watt, Xenon light source), a liquid crystal 

tunable filter (LCTF), and a 16-bit charge-coupled device (CCD) 16. The images were acquired within the wavelength 

range of 450 nm to 950 nm with 2-nm increment. The original dimension of hyperspectral images is 1392×1040×251.  

2.3 Pre-processing and spectra extraction 

The pre-processing of hyperspectral images included calibration, background removal, curvature correction, noise and 

glare removal, and GFP bands removal.  

Each hyperspectral image was calibrated using the image of a standard white reference board and the dark reference image, 

as described in Equation (1) below. 

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒(𝜆) =  
𝐼𝑟𝑎𝑤(𝜆)−𝐼𝑑𝑎𝑟𝑘(𝜆)

𝐼𝑤ℎ𝑖𝑡𝑒(𝜆)−𝐼𝑑𝑎𝑟𝑘(𝜆)
                                                               (1) 

where 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒(𝜆) is the normalized reflectance for wavelength 𝜆, 𝐼𝑟𝑎𝑤(𝜆) is the intensity value in raw hyperspectral 

image, 𝐼𝑤ℎ𝑖𝑡𝑒(𝜆) and 𝐼𝑑𝑎𝑟𝑘(𝜆) are the intensity values in the white and dark reference images, respectively. 

The standard white reference board is a disk, which only covers part of the area in the whole image. Therefore, the 

synthesized RGB image of the white reference board was used to generate a mask. For each hyperspectral image, only the 

area within the mask was calibrated, while the values of other pixels were all set to zero, as Figure 1(a) shows. The 

calibrated area includes both the mouse tissue and background, which is a metal board. Metal has very different spectrum 

with tissue, which would cause mismatch in the registration process. Therefore, a mask was generated using the strong 

reflective characteristic of metal in red-infrared range, and the mouse tissue was extracted from the background. Then, 

intensity-based rigid registration was carried out among all bands1, in order to eliminate the influence of mice motion 

caused by breathe and heartbeat. Considering the intensity variation among all 251 bands, we calculated average images 

of every 10 bands instead of an average image of all bands, and each band was registered to the corresponding average 

image. The shape of mouse body and the protrusion of the tumor make the amplitude of spectra differ a lot. Spectra of the 

same point captured at different distances can have the same shape with different amplitudes. Therefore, curvature 

correction was carried out on each hyperspectral image. For each individual spectrum, a constant was calculated as its total 

reflectance of all wavelengths, and the spectrum was divided by this constant to remove the intensity variation32. Because 

the original spectra contain noise, a 3-order median filter was applied to each hyperspectral image to remove the noise. 

There were a few glare pixels in hyperspectral images, mainly at the top of tumors. The spectra of these pixels have 

deformed shapes and higher amplitudes. A threshold was set for the sum of each spectrum, and the pixels with glares were 

removed. Then, the bands of 508 nm and 510 nm were removed from each hyperspectral image to avoid the influence of 

GFP, and the bands after 900 nm were removed because of the noise.  

In this study, GFP fluorescence images were used as ground truth for tumor detection15. Here we generated mask of tumor 

using fluorescence images to differentiate cancerous tissue from normal tissue, as Figure 1(b). After the aforementioned 

pre-processing, average spectra of each 10×10 pixels were extracted from cancerous tissue and normal tissue, respectively. 

We chose to use average spectra instead of spectrum of each single pixel to reduce the impact of animal motion among all 

bands caused by breath and heartbeat. The extracted average spectra were used as raw spectra. 
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(a)          (b)   

Figure 1. Illustration of preprocessing results. (a) Synthesized RGB image from hyperspectral data where only the area 

within the mask was calibrated and other pixels were set to zero. (b) Synthesized RGB image  after background removal and 

curvature correction, overlapped with tumor mask generated from GFP fluorescence image. 

 

2.4 Wavelet transformation 

A one-dimensional discrete wavelet transform can be considered as a combination of a high-pass filter (HPF) and a low-

pass filter (LPF). The input signal is filtered, in other words decomposed, by translations and dilations of the mother 

wavelet. The output of each filter has a dimension lower than that of the input. The low-pass filter extracts the approximate 

information, while the high-pass filter extracts the details. In this work, a 5-level DWT was applied to all the raw spectra 

as Figure 2 shows, and all the detail outputs (cDi, i=1, 2, 3, 4, 5) and the final approximation output (cA5) were 

concatenated to generate the wavelet feature W.   

 

Figure 2. Implementation of multi-level discrete wavelet transform and the composition of proposed feature W. 

 

In this work, wavelets from seven wavelet families (Haar, Daubechies, Symlets, Coiflets, Biorthogonal, Discrete Meyer, 

and Fejer-Korovkin) were used as mother wavelets. Each wavelet family has specific characteristics of symmetry, support 

length, and orthogonality. A wavelet family can have multiple wavelets except the Haar and Discrete Meyer wavelet. 

Wavelets in the same family differ in many ways. For example, wavelets in the Daubechies family generally have the same 

shape but different tap numbers, while those in the Biorthogonal family vary in both shape and tap number. To select the 

best mother wavelet for our application, we tested 16 wavelets in total, including 1 Haar wavelet (“haar”), 1 Discrete 

Meyer wavelet (“dmey”), 6 Daubechies wavelets (“db2”, “db4”, “db8”, “db16”, “db24”, “db32”), 3 Coiflets wavelets 

(“coif1”, “coif4”, “coif5”), 1 Symlet wavelets (“sym4”),  2 Biorthogonal wavelets (“bior3.3”, “bior4.4”), and 2 Fejer-

Korovkin wavelets (“fk4”, “fk22”).  

DWT has the intrinsic characteristic of preserving the shape of input signal. The approximation output of low-pass filter 

still has the peak and valley of the input with a reduced dimension. Therefore, except for the wavelet-based feature W, we 

also investigated the discriminative ability using only the approximation output of a 1-level wavelet transformation (cA1 

in Figure 2) and a 2-level wavelet transformation (cA2 in Figure 2). We compare the classification results of using (1) raw 

data, (2) 1-level DWT approximation output, (3) 2-level DWT approximation output, and (4) wavelet-based feature W that 

is the catenation of all outputs of a 5-level DWT. The two approximations used for classification were generated using 

Haar wavelet, because it is very commonly used and has low dimension. We used 16 different wavelets from 7 wavelet 

families to generate the wavelet-based feature W, and W generated with each mother wavelet was tested separately, in 

order to find the optimal mother wavelet for this application.  
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Figure 3.  Illustration of wavelet transformation outputs of tumor and normal tissue. (a) Typical raw spectra. (b) Output of  

1-level Haar wavelet low-pass filter. (c) Output of 2-level Haar wavelet low-pass filter. (d) Wavelet feature W using Haar 

wavelet as mother wavelet. (e)  Wavelet feature W using Daubechies 4 as mother wavelet. (f) Wavelet feature W using 

Daubechies 32 as mother wavelet. 

 

2.5 Support vector machine (SVM) classification 

In this study, we applied SVM with Gaussian radial basis kernel using MATLAB® (MathWorks, Natick, Massachusetts).  

To compare the discriminative ability, we used different features of the 12 mice, including the raw spectra, the 

approximation output of 1-level DWT, the approximation output of 2-level DWT, and the wavelet features W generated 

using different mother wavelets, to train and test the SVM classifier. We performed leave-one-out cross validation. A grid 

search was carried out to select the optimal values for parameters C and g. After determine the optimal values, an SVM 

was trained with 11 mice data, and tested on the testing mouse data.  

2.6 Evaluation metrics 

In this study, we use accuracy, specificity and sensitivity to evaluate the performance of classification, as shown in 

Equation (2). Accuracy is defined as the ratio of the number of correctly labeled pixels to the total number of pixels in the 

testing image. Specificity and sensitivity are calculated from true positive (TP), true negative (TN), false positive (FP), 

and false negative (FN), where positive corresponds to cancerous tissue and negative to normal tissue. Specificity is the 

ratio of TN to the sum of TN and FP, while sensitivity is the ratio of TP to the sum of TP and FN.   

Accuracy =
TP+TN

TP+FP+TN+FN
 ;    Sensitivity =  

TP

TP+FN
 ;    Specificity =  

TN

TN+FP
                                  (2) 

 

3. RESULTS AND DISCUSSION 

3.1 Classification with raw data and wavelet approximate data 

In the first stage, classification results of using (i) raw data, (ii) approximation output of 1-level Haar DWT, and (iii) 

approximation output of 2-level Haar DWT were compared. Classification using raw data got an average accuracy of 

76.5%, as well as 64.5% average specificity and 85.4% average sensitivity. The average accuracy and average specificity 

of SVM classification using 1-level DWT approximation output were 74% and 62.9%, which were lower but comparable 

to those of raw data, while the 87% sensitivity was slightly higher than that of raw data. Because DWT separates 

approximation and detail, the dimension of approximation output is only half of raw spectral data’s dimension. Therefore, 
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calculation time was decreased by at least 1/2 by using the 1-level DWT approximation. For the 2-level DWT 

approximation, the classification performance was not satisfying, because many details were lost. The average accuracy, 

specificity and sensitivity were 41.1%, 48%, and 27.1%, respectively. However, it proves the importance of detail 

information in spectral classification tasks.   

3.2 Classification with wavelet features W  

In the second stage, the performance of wavelet feature W generated using different mother wavelets was analyzed, in 

order to prove the feasibility of the proposed feature W, and to select an optimal mother wavelet for our application. We 

firstly used wavelets that are from different families but have similar tap numbers, thereby to compare the performance of 

different wavelet families. Twelve wavelets from six wavelet families were tested. The 12 wavelets were divided into two 

groups according to their tap numbers. Average accuracy, specificity and sensitivity were obtained from the testing results 

of 5 mice, as shown in Table 1. The Coiflets and the Daubechies wavelets performed better in both the small tap number 

group (tap number = 6 to 10) and the large tap number group (tap number = 22 to 64).  
 

Table 1. The average classification performance of 5 mice using wavelets from different families with similar tap number. 

Mother wavelet Tap number Average Accuracy (%) Average Specificity (%) Average Sensitivity (%) 

coif 1 6 90.2 86.6 95.4 

db4 8 89.7 86.3 94.7 

sym4 8 89.1 85.3 94.9 

fk8 8 89.2 87.1 94.3 

bior 3.3 8 88.8 86.8 95.8 

bior 4.4 10 88.6 86.2 94.4 

fk22 22 90.9 87.7 95.2 

coif4 24 91.1 89.3 95.7 

coif5 30 91.0 88.9 95.8 

db16 32 90.7 89.2 94.9 

db32 64 91.3 90.5 95.9 

dmey 63 89.2 86.0 96.7 

 

Secondly, we tested wavelets within the Daubechies wavelet family with different tap numbers. The reason we chose the 

Daubechies family is that (i) it shows better performance than others in Table 1, and (ii) it has wavelets with a wide tap 

number range from 2 (“db1”) to  90 (“db45”). The classification results of using feature W generated with 7 different 

Daubechies mother wavelets are shown in Figure 4. Apparently, the wavelets with larger tap numbers (db16, db24, and 

db32) generally worked better than those with smaller tap numbers (db1, db2, db4, db8).  
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Figure 4. Classification performance of 5 mice using wavelets in Daubechies family with different tap numbers.   

 

Finally, we chose Daubechies 32 as mother wavelet and tested the wavelet-based feature W on 12 mice. The classification 

results of all 12 mice are shown in Table 2. The classification using feature W achieved an average accuracy of 87.5%. 

The average specificity and average sensitivity were 90% and 83.1%, respectively. Additionally, we compared the wavelet-

based method to our previous work using the same mouse dataset and a tensor-based method16, and the proposed wavelet-

based feature got better accuracy than the previous tensor-based feature on 7 mice. The wavelet-based feature W shows 

favorable results for Mouse #892, #893, #894, #895, #897, and #885. For Mouse #891, where random scattering caused 

some tissue artifacts and the spectra of cancerous tissue and normal tissue overlapped, the wavelet method improved the 

classification results than raw data and tensor-based feature. However, our wavelet-based method had limitation for 

spectral data with large peak noise, which was caused by mice motion and vessels. Therefore, the classification results of 

Mouse #889 and Mouse #890 were not satisfactory.   

 

Table 2. Classification accuracy, specificity, and sensitivity of 12 mice using the proposed wavelet-based feature W. 

Mouse ID Accuracy (%) Specificity (%) Sensitivity (%) 

895 96.4 95.7 99.2 

893 96.3 93.4 99.3 

894 94.8 96.5 90.0 

885 94.2 92.0 96.0 

892 93.3 96.7 85.4 

897 93.3 91.5 96.9 

888 91.4 87.7 94.2 

896 87.4 99.2 59.2 

891 85.0 75.8 97.7 

898 82.4 88.7 80.3 

890 68.0 90.0 38.1 

889 67.8 72.8 61.4 

Average 87.5 90 83.1 
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Furthermore, we compared the classification results using raw data, 1-level DWT approximation, 2-level DWT 

approximation, and the proposed wavelet-based feature W (based on “db32” mother wavelet), as shown in Figure 5. Our 

proposed feature W obviously improved the accuracy and specificity than raw data. The 1-level DWT approximation had 

a comparable performance with raw data but decreased calculation time because of its lower dimension. Figure 6 shows 

some of the segmentations of well-classified mice.  
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Raw data 1-level DWT 2-level DWT W of db32  
 

Figure 5. The performance of all 12 mice using raw data, 1-level Haar DWT approximation output, 2-level Haar DWT approximation 

output, and the proposed feature W based on “db32” mother wavelet.  

 

(a)    (b)   

(c)    (d)    

Figure 6. Examples of tumor detection results using the wavelet feature W. (a) Classification result of Mouse #893. (b) Classification 

result of Mouse #894. (c) Classification result of Mouse #892. (d) Classification result of Mouse #897.  

 

4. CONCLUSION 

In this work, we investigated the feasibility of discrete wavelet transformation as a feature extraction method for in vivo 

head and neck cancer detection using hyperspectral imaging. We tested three kinds of features, i.e. the approximation 

output of 1-level DWT, the approximation output of 2-level DWT, and the catenation of all detail outputs of a 5-level 

DWT and the final approximation output. The three kinds of features showed different discriminative abilities for our 

application. The 1-level DWT approximation yielded comparable classification performance with raw spectra data, while 

decreased the calculation time to 1/2 of raw spectral data. The 2-level DWT approximation had apparently worse 
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discriminative ability, since it lost many details in the raw data. The wavelet feature W generated using all detail outputs 

and the final approximation output showed the best discriminative performance, because it extracted details in different 

levels and kept the approximate shape of raw data as well.  

Among the seven wavelet families, we found that the Coiflets and the Daubechies worked better than others. The accuracy 

of our SVM classification was higher when using wavelet features generated with larger-tap mother wavelet. Among the 

16 wavelets we have tested, the Coiflet 4, 5 and the high-order Daubechies were more efficient than other wavelets. With 

the proposed wavelet feature, we were able to distinguish between tumor and normal tissue with an average accuracy of 

87.5%, an average specificity of 90%, and an average sensitivity of 83.1%. Furthermore, our method has shown better 

discriminative ability for overlapped spectra.  
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