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Abstract
The common CT imaging signs of lung diseases (CISLs) which frequently appear in lung CT images are widely used in the
diagnosis of lung diseases. Computer-aided diagnosis (CAD) based on the CISLs can improve radiologists’ performance in the
diagnosis of lung diseases. Since similarity measure is important for CAD, we propose a multi-level method to measure the
similarity between the CISLs. The CISLs are characterized in the low-level visual scale, mid-level attribute scale, and high-level
semantic scale, for a rich representation. The similarity at multiple levels is calculated and combined in a weighted sum form as
the final similarity. The proposed multi-level similarity method is capable of computing the level-specific similarity and optimal
cross-level complementary similarity. The effectiveness of the proposed similarity measure method is evaluated on a dataset of
511 lung CT images from clinical patients for CISLs retrieval. It can achieve about 80% precision and take only 3.6 ms for the
retrieval process. The extensive comparative evaluations on the same datasets are conducted to validate the advantages on
retrieval performance of our multi-level similarity measure over the single-level measure and the two-level similarity methods.
The proposed method can have wide applications in radiology and decision support.

Keywords CommonCTimagingsignsof lungdiseases(CISL) .Medical imageretrieval .LungCTimage .Multi-level .Similarity
measure

1 Introduction

Lung cancer is the leading cause of cancer death worldwide
[1]. In the USA, cancers of lung and bronchus account for
about one quarter (27%) of all cancer deaths [2]. Early detec-
tion and curative treatment of lung cancers are crucially im-
portant to improve the survival of patients. Computer-aided
diagnosis (CAD) systems can be used to assist radiologists to

identify abnormal lesions from a large number of lung images
in an earlier stage for an improvement of cancer identification
[3, 4]. Content-based image retrieval (CBIR) can support
computer-aidedmedical image analytics by indexing andmin-
ing images that contain similar content [5, 6]. For CBIR, the
similarity measure is an important part. We focus and collect
the retrieval methods for the medical images. The existing
similarity measure methods can be classified into two types
based on the used levels.

1. Single-level similarity methods, such as the visual- and
semantic-level similarity methods: some methods mea-
sured the visual-level similarity based on the distancemet-
ric of visual features. The shorter distances corresponded
to higher similarity. To obtain a good performance, they
chose the favorable metric according to the descriptors,
like the city-block distance [7], the Mahalanobis distance
[8], Manhattan distance [9], cosine distance [10], and
Euclidian distance [11]. The other methods measured
the semantic-level similarity based on the classification
information. If two images had the same semantic class,
then they were similar. If two images had the different
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classes, then they were non-similar. They actually con-
verted the similarity measure problem into the classifica-
tion problem. They used the learning methods or annota-
tion models to get the class of image for retrieval, like the
boosted with decision trees and EM clustering [12], neural
network [13–15]. support vector machines (SVM)
[16–24], k-nearest neighbor (k-NN) [25], linear discrimi-
nant analysis (LDA) [26], random forests [27],
CCAPairLDA feature learning method [28], a heuristic
method [29], fuzzy c-mean clustering [30], deep
convolutional neural network [31, 32], controlled vocab-
ulary annotation [33], CMRM and CRM annotation
models [34], and the SEMI-SECC annotation method
[35].

2. Two-level similarity methods: texture and boundary fea-
tures were extracted as the visual features, and an image
annotation device was used to obtain semantic features.
Based on the visual and semantic features, the combined
similarity was computed in a weighted sum for the retriev-
al of 30 CT images of liver lesions [36]. A boosting frame-
work was proposed for distance metric learning that
aimed to preserve both visual and semantic similarities
[37], which had higher retrieval accuracy compared with
other retrieval methods for mammograms and had a com-
parable accuracy with the best approach for X-ray images
from the ImageCLEF. A new deep Boltzmann machine-
based multimodal medical image retrieval method was
developed based on the integration of the visual and tex-
tual information from medical images [38]. A new fused
context-sensitive similarity (FCSS) which fused the se-
mantic and visual similarities as the pairwise similarities
and obtained a global similarity through the manifold was
proposed for the retrieval of lung CT images [39]. A
multi-feature fusionmethod for the classification of cavity
was proposed which fused the mid-level CNN features
from the pre-trained model, and the low-level histograms
of oriented gradients (HOG) and local binary pattern
(LBP) features, and reduced the dimensionality of the
fused features using principal components analysis [40].

In the medical field, sometimes the visually similar images
have different diseases while the images with the same disease
have different appearances. Hence, calculating the similarity
by considering the multi-level similarity is useful for the med-
ical image retrieval. However, current similarity measure
methods for the medical images involved the one- or two-
level similarities. The one-level similarity measure methods
could not only drop the potentially useful information but also
lose the opportunity of mining the correlated complementary
advantage across multiple levels. The two-level similarity
measure methods involved the visual- and sematic-level infor-
mation had been proved to perform better than the single-
level-based retrieval method. The attribute-level information

can provide an intermediate representation between low-level
visual information and the high-level semantic information,
for improving the description of object. The use of attribute
information in computer vision problems has gained increased
popularity in recent years [41, 42]. Besides, because the rele-
vant details of images exist only over a restricted range of
scales, it is important to study the dependence of image struc-
ture at the level of resolution and to treat images on several
levels of resolutions simultaneously [43]. Partially inspired by
those, we present our multi-level similarity method, not only
considering the visual- and semantic-level information but
also fusing the attribute-level information. By maximizing
correlated complementary benefits of multi-level description,
the proposed method can achieve good retrieval performance
of the common CT imaging signs of lung diseases (CISLs).
The CISLs are the imaging signs that frequently appear in
lung CT images from patients with lung diseases, which are
often encountered and widely used in the diagnosis of lung
diseases [44].

The contributions of this paper are as follows: (1) We in-
vestigate the multi-level similarity for the measure of CISLs.
This is significantly different from typical existing methods
considering only single- or two-level information. The
attribute-level similarity is first fused to maximize comple-
mentary benefits across multiple levels for accurate similarity
measure of CISLs. (2) Our similarity method is a generic
framework in the scope of similarity measure, where some
related work can be viewed as an instance of our generic
formulation. (3) Extensive comparative evaluations demon-
strate the superiority of the proposed multi-level similarity
measure method over the other similarity methods on lung
image data from human clinical patients.

2 Method

The architecture of the proposed multi-level similarity method
(MLS) is shown in Fig. 1. Two main stages are incorporated:
(1) training procedure and (2) multi-level similarity retrieval
procedure. In the training procedure, the visual representation
of the CISLs is extracted, the attribute representation is ab-
stracted by performing the auto-encoder (AE) neural net-
works, and the semantic representation is achieved by learning
with distribution of optimized features (DOF) [45]. According
to the multi-level representation of CISLs, the similarities at
multiple levels are computed and combined in a weighted sum
form as the final similarity. To maximize the correlated com-
plementary benefits of multi-scale similarity, the best weight
of each level is obtained according to the smallest ratio of
intra-class distance to inter-class distance. In the multi-level
similarity retrieval procedure, given a query CISLs, we de-
scribe it at multiple levels, involving the visual, attribute,
and semantic levels and calculate the multi-level similarity
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between it and the CISLs in the database. According to the
similarities, we rank the CISLs in the database and re-rank for
better retrieval performance. In the next sections, we describe
the method, MLS, in details.

2.1 Multi-level representation

2.1.1 Visual-level representation

To describe the ROI at visual level, we extract multiple types
of low-level texture features. We use the local binary pattern
(LBP), the wavelet features, the bag of visual words based on
the HOG (B-HOG), and the histogram of CT values (CVH).

LBP is gray-scale invariant texture primitive statistic. It
produces a binary code by comparing a circularly symmetric
neighborhood with the value of the center pixel and trans-
formed it into an integer. We compute multi-scale LBP fea-
tures by varying the sample radius and numbers of neighbors.

Wavelet feature is the energy of wavelet-decomposed detail
images. It can present the spatial and frequency information

effectively. Wavelet feature is a common spectral texture fea-
ture, which is calculated from the image transformed into the
frequency domain. It can capture localized spatial and fre-
quency information and multi-resolution characteristics effec-
tively. In this paper, by using two-dimensional symlets wave-
let, the ROIs are decomposed to four levels. Then the horizon-
tal, vertical, and diagonal detailed coefficients are extracted
from the wavelet decomposition structure. Finally, we get
the wavelet features by calculating the mean and variance of
these wavelet coefficients.

B-HOG is bag of visual words based on the HOG feature.
We firstly extract the commonHOG feature.We partition a ROI
into blocks of 8 × 8 pixels and divide each block into four cells.
Then, we compute the orientation histogram for each cell and
link the orientation histograms of cells in each block as the
HOG feature vector of the block. However, this widely used
strategy is not applicable in this work because the size of ROIs
in lung CT images varies in different patients and different
pathological lesions. Hence, we adopt the bag of visual words
on HOG features as the ROI representation. We generate the

Fig. 1 An overview of the proposed multi-level similarity retrieval method

Fig. 2 Illustration of AE
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visual words of lung CT by employing a Gaussian mixture
modeling. The HOG feature vector of each block is mapped
to the visual word to obtain the B-HOG feature vector.

CVH feature is the histogram of CT values. In lung CT im-
ages, the CT values of pixels are expressed in Hounsfield units
(HU). We compute the histogram of CT values over each ROI.
The number of bins in the histogram is 40 because it can lead to
the highest classification accuracy among different numbers [46].

We extract the four different types of features to better
character the ROI. Since these features may contain comple-
mentary or irrelevant information, we adopt a feature selection
method [45] to select the more compact and discriminative
features for the description of ROIs at visual level.

2.1.2 Attribute-level representation

Attribute feature is a mid-level knowledge. It is between low-
level description and high-level concept. A category often
simultaneously exhibits multiple distinct attributes, whereas
an attribute can appear in the different categories. We can
express inter- and intra-category variations by learning the
attribute-based representation. To extract the attribute feature
better, we apply auto-encoder (AE), which is one of the deep

architecture-basedmodels, to learn the attribute features with a
minimum loss of original information.

The AE [47] is an unsupervised neural network that tries to
set the values of the target layer to be equal to the inputs. An
AE has one visible layer of l inputs, one hidden layer of d
units, one reconstruction layer of l units, and an activation
function. We illustrate an AE in Fig. 2.

AE contains two parts, encoder and decoder. Encoder is to
map the input X ∈ Rl to the hidden layer and produce the latent
activity Y ∈ Rd. Decoder is to map Y to an output layer which
has the same size of the input layer and reconstruct X as Z ∈ Rl.
We can get the Y and Z by

Y ¼ f w1X þ b1ð Þ
Z ¼ f w2Y þ b2ð Þ ð1Þ

where w1 and w2 are the weight of input to hidden and the
hidden to output, and b1 and b2 are their bias, f(p) is the acti-
vation function. In our method, it is a sigmoid function like:

f pð Þ ¼ 1

1þ exp −pð Þ : ð2Þ

Based on the structure of AE, we use the visual feature as its
input and train the network by iteratively updating the weights
and biases to minimize the error between input and

GGO lobulation CV

spiculation PI OP

calcification AB BMP

Fig. 3 The instances of nine CISLs categories; the smaller rectangular boxes in lung CT images are magnified to show the details of the images
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reconstruction. After obtaining the trained network, the recon-
struction layer with its parameters is removed. The learned fea-
tures that lie in the hidden layer are the deeper features. Since the
deeper features can be reconstructed into the input, they can be
viewed as an abstract of input and each feature can be viewed as
a necessary part of the abstract. Hence, we use the deeper feature
as the attribute feature. We determine the dimension of attribute
feature, which is the value of d, according to the minimum error
between the visual feature (input) and reconstructed feature
(output).

2.1.3 Semantic-level representation

The semantic features are considered high-level clinical infor-
mation in contrast with the low-level visual features and mid-
level attribute features. It can express the semantically mean-
ingful clinical knowledge. We automatically extract the se-
mantic feature by training visual features into semantic con-
cepts based on the learning method, DOF [45].

DOF is a hierarchical learning method. It can divide the im-
ages into k groups according to their distribution of features, and
train a classifier in each cluster, then it fuses the several classifiers
with different distributions for the final classification decision.
Since the same CISL may have different distributions and same
distribution may exist in the different CISLs, it is desirable to
decompose the features into classes with different distributions
and DOF is effective for the classification of CISLs.

We adopt the DOF to achieve the probability of belonging
to each semantic concept and link them into a vector as the
semantic feature.

2.2 Multi-level similarity

In this paper, we regard the visual feature as a signal, and the
AE and DOF are used to represent more abstract information to
achieve themultiple level-space information.We combine them
together for the MLS measurement. Let x, y be two samples,
VF(x), VF(y), AF(x), AF(y), SF(x), and SF(y) be their visual
feature, attribute feature, and semantic feature, respectively. We
use Euclidean distance as their similarity measure, represented
by EV(x, y), EA(x,y), and ES(x, y). They are calculated by

EV x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑VL

i¼1 VFi xð Þ−VFi yð Þð Þ2
q

EA x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑AL

i¼1 AFi xð Þ−AFi yð Þð Þ2
q

ES x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑SL

i¼1 SFi xð Þ−SFi yð Þð Þ2
q ð3Þ

where VL, AL, and SL are the dimension of feature vectors at
the three levels, respectively. We then fuse them together to
obtain the MLS measure, like

MLS x; yð Þ ¼ wVEV x; yð Þ þ wAEA x; yð Þ þ wSES x; yð Þ
wV þ wA þ wS ¼ 1

ð4Þ

where wV, wA, and wS are the weights of similarity measure at
different levels.

A similarity measure is good if it can minimize the intra-
class distance and maximize the inter-class distance. We define
a vector (wV, wA, wS) as the weight vector (w). We calculate the
average distance between any two samples with the same cat-
egory Ci as the intra-class distance in the class i with w:

D intra Ci;wð Þ ¼
∑

li∈Ci;l j∈Ci

MLS li; l j;w
� �

NCi

ð5Þ

whereMLS(li, lj,w) is themulti-level similarity value of the two
samples li and lj belonging to the same category Ci under a
specific w and NCi is the number of samples in the category Ci.

Then, we compute the inter-class distance between the
class Ci and class Cj with w like:

D inter Ci;C j;w
� � ¼

∑
li∈Ci;l j∈C j;i≠ j

MLS li; l j;w
� �

NCi þ NC j

ð6Þ

where NCi and NC j are the number of samples in the category

Ci and Cj.
Hence, if we have C classes, we choose the best weight

vector w* according to the smallest ratio.

w* ¼ arg min
∑C

i¼1D intra Ci;wð Þ
∑C

i¼1;i≠ j∑
C
j¼1D inter Ci;C j;w

� � ð7Þ

Our similarity method is a generic framework in the scope
of similarity measure. Not only the visual-, attribute-, and
semantic-level representation can be self-defined according
to different tasks but also the similarity measure at each level
can use any distance metric to replace the Euclidean distance
in this paper. In addition, the different similarity frameworks
can be generated by adjusting the weights, as shown in Eq.
(4). If we set the wA and wS to be zeros and wV to be 1, then
MLS(x, y) = EV(x, y). It means our similarity measure method
is one of the visual similarity measure method. If we set wV

and wA to be zeros and wS to be 1, then MLS(x, y) = ES(x, y).
Our method is one of semantic similarity measure method. If
we set wA to be zeros, we can obtain a combination of visual
and semantic similarities. Hence, we can formulate different
frameworks by adjusting the weights.

2.3 Property of MLS

A set of fundamental requirements was given for a distance
measure [48]. Let X and Y be the two samples, we will prove
that our similarity measure meets the basic requirements.

Property 1 Non-negativity: The distance between X and Y is
always a value which is greater than or equal to zero.
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MLS X ; Yð Þ≥0: ð8Þ

Because our distance measure method is the weighted sum
of three Euclidean distances and each Euclidean distance val-
ue is certainly not negative because of the definition in Eq. (3),
our distance value is bigger than or equal to zero for sure.

Property 2 Identity of indiscernibles: The distance between X
and Y is equal to zero if and only if X is equal to Y.

MLS X ; Yð Þ ¼ 0 iff X ¼ Y : ð9Þ

We use reductio ad absurdum. Suppose X is not equal to Y,
then the Euclidean distance value betweenX and Y is larger than
zero. Since the weight of any Euclidean distance is a positive
number, the product of the Euclidean distance and its weight
must be a positive number. So that the value of MLS(X,Y) must
be a positive number, contrary with the hypothesis that the
value of MLS(X,Y) is zero. Accordingly, since the initial com-
mensurability assumption engendered a contradiction, we have
no alternative but to reject it. Therefore, if the MLS between X
and Y equals zero, then X must equal Y.

Property 3 Symmetry: The distance between X and Y is equal
to the distance between Y and X.

MLS X ; Yð Þ ¼ MLS Y ;Xð Þ ð10Þ

Since Euclidean distance is the square root of the sum of
the paired differences squared, it is symmetrical. So the sum of
weighted Euclidean distance is still symmetrical. Hence, MLS
satisfies the symmetry requirement.

Property 4 Triangle inequality: The distance between X and Z
is smaller than or equal to the sum of the distance between X
and Y and the distance between Y and Z.

MLS X ; Zð Þ≤MLS X ; Yð Þ þMLS Y ; Zð Þ ð11Þ

Let E(X, Y) be the Euclidean distance of X and Y. Since
Euclidean distance satisfies the triangle inequality [49], so
E(X, Z) ≤ E(X, Y) + E(Y, Z). Accordingly,MLS(X, Z) is derived
as follows:

MLS X ; Zð Þ ¼ wVEV X ; Zð Þ þ wAEA X ; Zð Þ þ wSES X ; Zð Þ
≤wV EV X ; Yð Þ þ EV Y ; Zð Þð Þ
þ wA EA X ; Yð Þ þ EA Y ; Zð Þð Þ
þ wS ES X ; Yð Þ þ ES Y ; Zð Þð Þ
≤wVEV X ; Yð Þ þ wAEA X ; Yð Þ þ wSES X ; Yð Þ
þ wVEV Y ; Zð Þ þ wAEA Y ; Zð Þ

�
þ wSES Y ; Zð Þ

≤MLS X ; Yð Þ þMLS Y ; Zð Þ

ð12Þ

Hence, MLS satisfies the triangle inequality requirement.

2.4 CISL retrieval based on MLS

The CISLs are the well-known categories of CT imaging signs
of lung diseases that frequently appear in patients’ lung CT
images and play important roles in the diagnosis of lung dis-
eases. The nine categories of CISLs have been summarized by
radiologists, including ground-glass opacity (GGO), lobula-
tion, cavity and vacuolous (CV), spiculation, pleural indenta-
tion (PI), obstructive pneumonia (OP), calcification, air
bronchogram (AB), and bronchial mucus plugs (BMP) [44].
Although this taxonomy is not complete, these CT image
signs are often encountered in the lung CT images and are
widely used by radiologists for the diagnosis of lung diseases.
The nine categories of CISLs are illustrated in Fig. 3.

In this paper, we apply the proposed MLS similarity
measure method to search the similar CISLs in the regions
of interest (ROIs) in lung CT images. Given a query ROI,
the multi-level similarity between the query ROI and the
ROIs in the database can be calculated. Based on the
similarity, the retrieved images are ranked. After receiving
the initial results, the re-ranking process based on rele-
vance feedback from users is executed to reorder the ini-
tially retrieved images for more accurate retrieval. The
users provide the relevance feedback by specifying the
retrieved image is relevant or irrelevant. The relevant im-
ages are taken as the query images to search the similar
images and the most frequent retrieved images will re-
place the irrelevant images marked by users. The re-
ranking process can further refine the retrieval results to
improve the retrieval performance.

3 Results

3.1 Databases

The instances of nine categories of CISLs were collected
from clinical patients in the Cancer Institute and Hospital
at Chinese Academy of Medical Sciences. The lung CT
images were acquired by CT scanners of GE LightSpeed
VCT 64 and Toshiba Aquilion 64 and saved slice by slice
according to DICOM 3.0 standard. The slice thickness is
5 mm, the image resolution is 512 × 512, and the in-plane
pixel spacing ranges from 0.418 to 1 mm (the mean is
0.664 mm). The rectangular 2D ROIs wrapping CISLs
in lung CT images are manually annotated by a qualified
radiologist to produce a gold standard. In order to reduce
the differences, the radiologist read all the cases twice
with a more than 1-month interval to ensure the effective-
ness of the recheck. The resultant numbers of ROIs are
511. More details about the database can be found in the
paper [44]. To conduct fivefold cross-validation experi-
ments, we split the available instances into five disjoint
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subsets nearly evenly and guarantee that the instances in
different subsets come from different patients for avoiding
the bias in measuring performance. Table 1 lists the num-
bers of ROI instances in five data subsets and the numbers
of patients for each CISL category, where D1–D5 denote
the first to the fifth subsets, respectively, and NoP means
the number of patients. Actually, each of the five data
subsets is taken as the test set in turn, and the four subsets
in the remaining data are the training set.

3.2 Evaluation criteria

To evaluate the retrieval performance of the proposed similarity
measure, we adopt the most commonly used p@n(q) and
Precision-Recall Graph (PR Graph) as the evaluation criterion.

& Let p@n(q) be the precision at position n, which measures
the proportion of the relevant samples in the n returned
samples for the query q. It is determined by

p@n qð Þ ¼ 1

n
∑n

i¼1rele q; ið Þ ð13Þ

where rele(q, i) indicates the relevancy between sample q and
the ith-returned sample:

rele q; ið Þ ¼ 1; if ith image is relevant to q
0; others

�
ð14Þ

& PR Graph is a line graph plotted from the precision-recall
values. Precision is the fraction of retrieved images that
are relevant, while recall is the fraction of relevant images
which have been retrieved.

3.3 Parameter tuning

The two kinds of parameters in our approach are set up
through experiments. The first parameter is the number of
attribute feature. The second one is the best weights of simi-
larities at multiple levels.

3.3.1 The number of attribute features

We have extracted the 180-dimension visual features and select-
ed the discriminative visual features with 92-D, 139-D, 78-D, 69-
D, and 83-D, respectively, in each round of fivefold cross-
validation experiments. Then we test the number of attribute
features gotten by AE from 10 to NF-10, where NF is the dimen-
sion of discriminative visual features. We record the mini-batch
mean-squared error on training set with a different number in
fivefold evaluation and show them in Fig. 4. In Fig. 4, we choose
38, 23, 29, 11, and 41 as the number of attribute features in the
five rounds of experiments according to the minimum error. We
can see that the dimensions of the attribute features are between
the dimension of the visual feature and the dimension of the
semantic feature, which again indicates that the AE can obtain
the abstract representation in the mid-level scale.

3.3.2 The weights at the multiple levels

We perform a grid search on the training data to select the
optimal weights over the range of {0.1, 0.2, 0.3… 0.9, 1} and
under the condition of their sum equaling 1. We compute the
ratios of intra-class distance to inter-class distance based on the
different weights and show the average results in Fig. 5, where
x-axis and y-axis labels indicate the weights of wVand wA, and
z-axis indicates the ratio of intra-class distance to inter-class
distance corresponding to the wV and wA. In order to ensure
that each level similarity can work, the value of each weight
must be greater than or equal to 0.1 and less than or equal to 0.8.
Since the sum of wV, wA, and wS is 1, we just show the wVand
wA becausewS can be calculated by 1 −wV − wA. According to
Eq. (7), we choose the (0.1, 0.1, 0.8) as the weight of visual,
attribute, and semantic similarities, because it can make the
ratios to be the smallest one. We use the red point to show it,
and it was used in the following fivefold cross-validation ex-
periments, respectively.

3.4 Experiment results

We use the pre-designated training data for the model train-
ing, the acquirement of the multiple-level information, and
the selection of optimal parameters. Then, on the pre-
designated testing set, we evaluate the retrieval perfor-
mance of the proposed MLS method.

Table 1 The distribution of ROIs

CISL D1 D2 D3 D4 D5 Total NoP

GGO 9 9 9 9 9 45 25

Lobulation 9 8 8 8 8 41 21

Calcification 10 10 9 9 9 47 20

CV 30 30 29 29 29 147 75

Spiculation 6 6 6 6 5 29 18

PI 16 16 16 16 16 80 26

AB 5 5 5 4 4 23 22

BMP 17 16 16 16 16 81 29

OP 4 4 4 3 3 18 16

Total 106 104 102 100 99 511 252
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3.4.1 Retrieval performance

We use the pre-designated testing data as a search system. We
select every example in the testing database as a query exam-
ple and search the similar examples in the search system. We
show the average p@n at each of ten top ranks from one to ten
for the similarity measure based on the proposed MLS in the
five founds in Table 2. In Table 2, we can see our precision can
achieve 100%when returning to one image. As the number of
returned images increases, the precision reduces. When
returning ten images, the MLS-based search method still ob-
tains a precision of more than 74%. Therefore, we can say that
the proposed MLS similarity measure method is effective.

3.4.2 Effectiveness of MLS

On the one hand, to prove the advantage of multi-level simi-
larity, we perform the retrieval task using the similarity mea-
sure with different levels, including the single level, two
levels, and our three levels. We record the p@n at each of
the ten top ranks over the fivefold cross-validation and show
the average p@n in Fig. 6. In Fig. 6,MV,MA, andMS mean the
similarity measure with only visual, attribute, and semantic

levels, respectively, MVA, MVS, and MAS mean the similarity
measure with two levels, visual and attribute levels, visual and
semantic levels, and attribute and semantic levels, respective-
ly, and MLS is our similarity method, representing the simi-
larity measure with multiple level together. In Fig. 6, we can
see that the similarity methods involved two levels perform
better than those involving one level.MVA obtains higher pre-
cision at any position n from one to ten thanMVandMA.MVS

andMAS greatly improves the precision when n is smaller than
six compared with MS but perform worse when n is bigger
than 6. It illustrates that the similarity measure with two levels
is sensitive to the number n and could gain unstable improve-
ment compared with the similarity measure with one level,
although it can obtain more information. Our MLS method
by involving three levels can achieve the best result no matter
what n is, which proves our similarity method can give a good
and robust retrieval result for CISLs.

On the other hand, we compare our proposedMLSwith the
state-of-the-art retrieval method of CISLs, FCSS [39], which
is one of the two-level similarity method, to highlight the
effectiveness of our MLS method.

Firstly, we compute the average p@n at each of the ten
top ranks for the method FCSS and our MLS. The results
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Fig. 4 The mini-batch mean-squared error with the different dimensions of attribute features in fivefold evaluation
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are shown in Fig. 7. In Fig. 7, we can see our MLS
method by involving three levels which can achieve a
significant improvement in retrieval precision. The
highest increase rate brought by our MLS is 29.8% com-
pared with FCSS.

Secondly, we give the PR graphs for our MLS and the
FCSS [39] in Fig. 8, where the solid red curve represents the
PR curve obtained by our MLS and the dotted black curve
represents the PR curve obtained by FCSS. In Fig. 8, we can

see that the PR curve of our MLS involving multiple levels is
higher than FCSS. We compute the areas under these curves
(AUC) for these methods. Our AUC is 0.71, which is signif-
icantly higher than the 0.49 obtained by FCSS. It proves our
method by combining multiple levels which can give better
retrieval performance again.

Lastly, we give the retrieval results for two query examples
by using the compared method FCSS and our MLS. We show
the top 10 retrieval results in Fig. 9, where the red boxes
indicate irrelevant images and the others are relevant. In Fig.
9, we can see that FCSS and our MLS can search the most
similar images successfully. However, FCSS is sensitive to the
visually similar images, such as the returned eighth image for
the first query image whose category is GGO. Although the
returned eighth image has an extremely similar appearance
with GGO, its category is calcification. FCSS makes the
wrong decision. Since MLS can comprehensively consider
the attribute information and semantic information, it can ig-
nore those just visually similar images and obtain more accu-
rate similarity measure. In addition, because of the advantage
of the MLS, it can search the images with the same category
and with different appearances with the query image, such as
the top eighth image for the second query example. These
results indicate that our proposed MLS can improve the re-
trieval performance by involving the multiple levels.

Table 2 The average p@n values from 1 to 10 obtained byMLS in five
founds

Founds top n 1 2 3 4 5

1 1.0 1.0 1.0 1.0 1.0

2 0.930 0.931 0.948 0.956 0.965

3 0.900 0.888 0.915 0.935 0.931

4 0.878 0.844 0.906 0.913 0.911

5 0.862 0.826 0.898 0.895 0.887

6 0.850 0.812 0.888 0.882 0.875

7 0.829 0.792 0.872 0.874 0.860

8 0.816 0.774 0.860 0.862 0.850

9 0.803 0.754 0.831 0.830 0.828

10 0.778 0.747 0.808 0.806 0.800

(a) (b) 

(c) (d) (e)

Fig. 5 The ratios of intra-class distance to inter-class distance based on the different weights of the visual similarity (wV) and attribute similarity (wA) in
the fivefold cross-validation experiments
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3.4.3 Efficiency of MLS

To see the efficiency of our similarity method, we compute the
running time for our similarity method involving multiple
levels. In order to reduce retrieval time, the images in the
database are characterized at the multiple levels in the off-
line stage. We implement our method in MATLAB codes in
a Windows 7 desktop with 32 GB RAM and 3.40 GHz pro-
cessor and record the running time for a query image includ-
ing the multi-level representation time, the pair-wise multi-
level similarity computation time, and the total ranking time
in our CISL database in Table 3. It takes about 3 ms to repre-
sent one query ROI. The pair-wise similarity measure between
the query ROI and ROI in the database takes about 0.0057ms.
Since the ROIs in the database have been represented in ad-
vance, the retrieval time is the sum of multi-level representa-
tion time for query ROI (3ms) and the similarity measure time
for query ROI and each ROI in the database (0.6 ms because

there are about 100 ROIs in our database). Hence, given a
query ROI, we can obtain the retrieval results on our database
in 3.6 ms. It means our retrieval time is real time. Moreover, it
will become even more efficient if we optimize the code using
multi-threading, GPU acceleration, or parallel programming.

3.4.4 Re-ranking performance

To further improve the retrieval performance, the re-ranking
process is used to reorder the initially retrieved images to
move the relevant images to the top. We give re-ranking
results for a query example and show the top 10 retrieval
results in Fig. 10. In Fig. 10, the query example is shown in
the first row and the initially retrieved top 10 images are
shown in the second row. The user provides the feedback
that marked the irrelevant images in the red dotted boxes.
The user-provided feedback is employed to perform re-rank-
ing, and the re-ranking of the top 10 images is shown in the
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last row. We can see that all of the ten retrieved images are
relevant in the re-ranking results. Those results prove more
relevant images could be found with the help of the user
feedback, and this re-ranking process can improve the re-
trieval precision.

In addition, we compare the initial retrieval performance
and re-retrieval performance, and the top n retrieval precisions
are shown in Fig. 11. The re-ranking process can achieve 82%
precision in the ten images retrieved and obtain an increase
rate of approximately 4%. Since the user feedback can specify
which image is relevant or irrelevant, the re-ranking is able to
produce better retrieval results, especially when return more
than two retrieved images.

4 Discussion

In this paper, we proposed a MLS method for the retrieval of
CISLs. The MLS retrieval method is evaluated on a dataset of
511 lung CT images from clinical patients, and the results
demonstrate its effectiveness and efficiency.

Although the similarity methods of medical images have
previously been proposed, most of the methods calculated the
similarity at one level. Only a few papers considered the sim-
ilarity at two levels. However, the similarity of medical images
is particular. Some medical images look like each other, but
they are related to different diseases. Some medical images
looked quite different yet are the instances from the same
disease. Hence, it is necessary to measure the similarity at
multi-levels. The advantage of our method is the combination
of multi-level similarity for accurate similarity measure in
CISLs. Moreover, combining the attribute similarity together
with visual and semantic similarities is for the first time con-
sidered for the lung CT image retrieval.

First, to characterize the CISLs at multi-levels well, we
give a good description by extracting discriminant features
at multi-levels. (1) We extract multiple types of visual features
from different spaces to acquire complementary information
and select the compact and discriminative features for the
description of CISLs at visual level. In Fig. 6, we can see that
the similarity method involving the visual similarity can ob-
tain an average precision of above 50% in the retrieved top 10
images, which proves our visual feature can give a good dis-
crimination of different CISLs; (2) we adopt the AE to learn
deep attribute feature. AE is an unsupervised learning algo-
rithm that applies backpropagation, setting the target values to
be equal to the inputs. It can abstract more compact and rele-
vant information for an enhanced generalization and accurate
representation, e.g., the attribute similarity achieve good

Query 1

FCSS

MLS

Query 2

FCSS

MLS

Fig. 9 Retrieved top 10 similar
images for given query image
using our method MLS and the
compared method FCSS, where
the red boxes indicate irrelevant
images and the others are relevant

Fig. 8 PR graph from our MLS and the compared method FCSS
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retrieval performance, as shown in Fig. 6; (3) we apply the
DOF to learn the semantic feature. It is used to improve the
classification performance of CISLs. In Fig. 6, we can see that
the retrieval performance obtained by semantic similarity is
better than those by visual similarity and attribute similarity
when n is more than 2. Please note that because of the com-
plicated relationship between the appearance and category of
CISLs, it is not established that the attribute features absolute
character of the CISLs better than the visual features or the
semantic features must be more discriminative than the attri-
bute features. Hence, that is the reason why it is necessary to
combine multi-level information together.

Second, the proposed multi-level similarity is a generic
framework. Since our MLS combines multi-level similari-
ties in a weighted sum, different frameworks can be for-
mulated by applying different image representation tech-
niques, replacing the different distance metrics, or
adjusting the weights. Although the weights are deter-
mined according to the maximum inter-class distance and
minimum intra-class distance of CISLs in this paper for
best retrieval performance, they are customized for the dif-
ferent requirements. Specifically, for a query instance, if
we want to find more semantically similar CISLs than vi-
sual similar ones, we can increase the proportion of the
weight of semantic similarity and reduce the proportion
of others. Then the semantic similarity could contribute
most to the final similarity and the top similar instances
could have the same category with the query one in a great
probability. Such as the extreme case, the similarity meth-
od [12] computed the similarity based on the only semantic
information, where the weight of semantic similarity is 1
and the others are zeros in our framework. Another ex-
treme case, the similarity method [11], used only visual
similarity, where the weight of visual similarity equals 1
and the others are zeros in our framework. Moreover, the
method [39] is a special instance of our method where the

attribute weight is zero. Although the experimental results
proved that the multi-level similarity method with the de-
termined weights could achieve the best retrieval perfor-
mance on our database compared with the one-level simi-
larity methods and two-level similarity method, the differ-
ent frameworks formulated by our MLS still have the po-
tential applications, such as, education, efficient data man-
agement, and so on.

Finally, the proposedMLSmethod is effective and efficient.
The proposed method is evaluated on the database containing
the instances of nine categories of CISLs from clinical patients,
and the instances used for training and testing are guaranteed to
come from different patients to avoid bias. Experimental re-
sults prove the effectiveness of our method, as shown in Figs.
6, 7, 8, and 9. Our approach offers higher retrieval precision
than the state-of-the-art similarity methods, including the
single-level similarity measure [6, 31] and the two-level simi-
larity methods [38, 39]. It can even further improve the retriev-
al performance with the help of the re-ranking process. Our
improvement, compared with the one- and two-level similari-
ties, is significant with p < 0.000000001 by t test. Moreover,
different from the other multi-level feature fusion method [40],
which fused two-level features by using PCA, including the
mid-level CNN features from the pre-trained model on the
Cifar-10 dataset, and the low-level HOG and LBP features,
our method fuses the three-level features in a weighted-sum
form to provide more rich information and an easily custom-
ized, user-defined retrieval process and trains and extracts the
features from scratch to obtain more accurate description of
CISLs. In addition, our method is real time on a standard PC
without multi-threading, GPU acceleration, and parallel pro-
gramming. We can obtain the retrieval results on our database
in 3.6 ms while the method FCSS [39] takes about 46 ms on
the same database. It proves that our retrieval method is more
efficient. In Table 3, we can see most time is spent on image
representation, which is 3.078 ms, and pairwise similarity

Query image

MLS

Re-MLS

Fig. 10 Retrieved and re-
retrieved top 10 similar images
for given query image, where the
red dotted boxes are marked by
user as the irrelevant images and
the others are relevant

Table 3 The running time (ms)
for MLS Multi-level representation (ms) Similarity measure (ms) Total (ms)

Visual level Attribute level Semantic level

0.4252 0.0087 2.6439 0.0057 3.6
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computation takes approximately 0.006 ms. If we perform the
retrieval task on a database containing 100,000 images and
extract the features of images in the database during offline
processing, the total time taken for a retrieval on the entire
database is about 0.6 s (3.078 + 0.006 × 100,000 ms). It will
even be faster if it involves multi-threading, GPU acceleration,
or parallel programming. Hence, we can say our proposed
similarity method is effective, promising, and can be applied
in a huge medical image database.

5 Conclusions

In this paper, we have proposed a new similarity method for
the CISLs. Since both the resemblance in visual appearance
and the similarity in the semantic concept are important in the
medical diagnosis and the relevant details of images exist only
over a restricted range of levels, our framework represents a
multi-level similarity method by mining the correlated com-
plementary advantage across multiple levels. The proposed
method combines the similarity at the visual level, semantic
level, and especially attribute level for a final multi-level sim-
ilarity. In addition, our method is a generic similarity frame-
work in the scope of medical retrieval applications. The results
from the experiments on the 511 lung CT images from clinical
patients show that our method could improve the similarity
measure for better retrieval compared with those one-level
similarity methods and the two-level similarity methods and
demonstrate that our similarity method is effective on the sim-
ilarity measure of CISLs. Since CISLs are closely related to
lung diseases, the proposed method has the potential to aid
radiologists in decision making during the clinical practice.
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