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ABSTRACT  

Computer-assisted image segmentation techniques could help clinicians to perform the border delineation task faster with 

lower inter-observer variability. Recently, convolutional neural networks (CNNs) are widely used for automatic image 

segmentation. In this study, we used a technique to involve observer inputs for supervising CNNs to improve the accuracy 

of the segmentation performance. We added a set of sparse surface points as an additional input to supervise the CNNs for 

more accurate image segmentation. We tested our technique by applying minimal interactions to supervise the networks 

for segmentation of the prostate on magnetic resonance images. We used U-Net and a new network architecture that was 

based on U-Net (dual-input path [DIP] U-Net), and showed that our supervising technique could significantly increase the 

segmentation accuracy of both networks as compared to fully automatic segmentation using U-Net. We also showed DIP 

U-Net outperformed U-Net for supervised image segmentation. We compared our results to the measured inter-expert 

observer difference in manual segmentation. This comparison suggests that applying about 15 to 20 selected surface points 

can achieve a performance comparable to manual segmentation. 

Keywords: deep learning, convolutional neural network (CNN), image segmentation, MRI, prostate.  

1. INTRODUCTION  

Recently, fully-automatic deep learning approaches are widely used for medical image analysis such as image 

segmentation1-5. Although deep learning demonstrated a very high capability in fast and accurate segmentation of medical 

images, there are still segmentation challenges that have not been well addressed yet. One of the main challenges in using 

convolutional neural networks (CNNs) in medical imaging is the lack of a sufficiently large dataset to train the network1, 

2. The small sample size of the training data could have a negative impact on the network accuracy and reliability. Data 

augmentation is an approach for addressing the data size issue by increasing the size of the training dataset. However, data 

augmentation is not always helpful to reach a clinically accepted accuracy6. More specifically, in medical imaging, some 

simple augmentation techniques such as, rotation, translation, and reflections are not always valid. Therefore, in some 

studies more complicated data augmentation approaches such as using generative adversarial networks (GANs) to generate 

synthetic data have been used7, 8. 

Another way to address the accuracy issue is to supervise the CNN by incorporating an expert operator interaction. 

However, it is not straightforward to supervise a deep learning algorithm with user inputs during evaluation and testing, 

and to the best of our knowledge, there are no studies in the literature on semiautomatic CNN-based techniques. In this 

paper, our goal is to direct a fully convolutional neural network with minimal manual initialization to improve the three-

dimensional (3D) image segmentation accuracy and reliability. We tested our method for segmentation of the prostate in 

magnetic resonance imaging (MRI) and compared the results to fully automatic deep learning-based segmentation results. 

We used manual segmentation performance as the reference for evaluation of the algorithm. 
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2. METHODS 

2.1 Data 

In this work, we used a set of 43 T2-weighted pelvic MRI from 43 prostate cancer patients. The MRI dataset contains 1.5 

T and 3.0 T T2-weighted magnetic resonance (MR) images with the original size of 256 × 256 to 320 × 320 voxels. The 

slice thickness ranged from 0.625 mm to 1.0 mm, and the slice spacing ranged from 1.0 mm to 6.0 mm. All the MR images 

were resampled to make the voxel size isotropic to the in-plane image resolution. For each MR image, two manual 

segmentation labels were provided by two expert radiologists.  

In this work, we used one set of manual labels as the segmentation reference for training, validation, and testing purposes, 

and the second set is used for inter-observer difference measurements. From the first observer, we randomly selected 75% 

of the images (32 images) for training purposes (i.e., 60% for training [26 images] and 15% for validation [6 images]). 

The remaining 25% of the images (11 images) were reserved for final testing of the method.   

2.2 Preprocessing 

To minimize the data load on the graphics processing unit (GPU) and speed up the training process, we cropped the MR 

images to a bounding box of 128×128×70 voxels. We scaled the image intensity dynamic range to the range of zero to 

one. We doubled the number of training samples by using horizontal reflection of the images to exploit the left-right 

symmetry of the images. 

2.3 Operator manual interaction: 

To supervise the network for more accurate segmentation of the prostate we involved a set of sparse boundary landmarks 

as one input of the CNN along with the input image. In this study, we select a set of 𝑁 randomly distributed points on the 

shape surface: 
{𝑝1, 𝑝2, … , 𝑝𝑁}, 

where 𝑝𝑛 = (𝑥𝑛 , 𝑦𝑛 , 𝑧𝑛) is the nth selected surface point. We restricted the distance between each point pair based on the 

size of the 3D shape to have the points uniformly distributed on the surface. We repeat the randomized point selection 

process five times per image for data augmentation purposes. For each set of selected points, we made a binary image 

the same size as the actual MR image with all voxels equal to zero except at the point locations (𝑃(𝑥, 𝑦, 𝑧)): 

𝑃(𝑥, 𝑦, 𝑧) = {
1, (𝑥, 𝑦, 𝑧) ∈ {𝑝1, 𝑝2, … , 𝑝𝑁}

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

We used this binary mask as the basis for one input of our algorithm. To allow the CNN to extract useful features from 

the binary point mask, we made an intensity gradient around the points by measuring the Euclidean distance function of 

the point mask: 

𝐷𝑃(𝑥, 𝑦, 𝑧) = 𝑚𝑖𝑛{𝑑1, 𝑑2, … , 𝑑𝑁}, 

where 𝑑𝑛 is the Euclidean distance between (𝑥, 𝑦, 𝑧) and 𝑝𝑛. We then scale the distance values to range between zero 

and one by dividing the distance values by half of the 3D image diagonal length: 

𝐷̂𝑃(𝑥, 𝑦, 𝑧) =
𝐷𝑃(𝑥,𝑦,𝑧)

1

4
√(𝐷𝑥

2+𝐷𝑦
2+𝐷𝑧

2)
, 

where 𝐷𝑥, 𝐷𝑦 , and 𝐷𝑧 are the dimensions of the image along x, y, and z axes. 

To provide the points’ information to the network we used two different schemes: 

Two input channels: We used the distance function of the points mask (𝐷̂𝑃) along with the MR image (𝐼) as the two 

channels of the CNN input (Figure 1a).  

Two input paths: We used a CNN architecture with two input paths (as seen in Figure 1b), one for 𝐼 and the other for 𝐷̂𝑃.  

2.4 Fully convolutional neural network architectures 

In this work, we used two different network architectures based on a U-Net architecture2 customized for 3D images. Figure 

1 shows these architectures. We trained two CNN models using these two architectures: 
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Model I (U-Net with two input channels): For training this model, we used U-Net architecture shown in Figure 1a with 𝐼 
and 𝐷̂𝑃 as the two input channels of the network. 

Model II (U-Net with two contraction paths): In this model, we used the dual-contraction path U-Net shown in Figure 1b. 

Hereafter, we call this model dual-input path (DIP) U-Net. 
 

 
(a) 

 
(b) 

Figure 1. CNN architectures. (a) Model I: four-level U-Net with two input channels, and (b) Model II: four-level DIP U-

Net with two contraction paths. The number of feature maps in each layer is mentioned on the top of that layer. For each 

level, the size of each feature map is mentioned at the left side of the level. 
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For both networks, we used the Adadelta optimizer with “soft Dice” similarity coefficient-based loss function defined as 

follows: 

𝐿 = 1 −
2∑ [ℎ (𝐼(𝑥, 𝑦, 𝑧), 𝐷̂𝑃(𝑥, 𝑦, 𝑧)) . 𝐺(𝑥, 𝑦, 𝑧)]𝑥,𝑦,𝑧

∑ ℎ (𝐼(𝑥, 𝑦, 𝑧), 𝐷̂𝑃(𝑥, 𝑦, 𝑧))𝑥,𝑦,𝑧 +∑ 𝐺(𝑥, 𝑦, 𝑧)𝑥,𝑦,𝑧

 

where ℎ (𝐼(𝑥, 𝑦, 𝑧), 𝐷̂𝑃(𝑥, 𝑦, 𝑧)) is the probability value of the output probability map at (𝑥, 𝑦, 𝑧) and 𝐺(𝑥, 𝑦, 𝑧) is the value 

of the reference binary mask at (𝑥, 𝑦, 𝑧).  

2.5 Post-processing 

To reduce the output noise and smoothen the segmentation label, we used a morphological filtering technique composed 

of a closing filter followed by an opening filter. We applied the morphological filtering to each axial slice using a two-

dimensional (2D) structural element of size 3×3. We kept the largest 3D objects in the segmentation label and removed all 

the other objects, considering them as false positive regions. 

2.6 Implementation details 

We used TensorFlow9 to implement the CNN models in a Python platform. We used a computer with Intel Xeon Processor 

E5-2623 v4 (2.60 GHz), 512 GB DDR4 2400 MHz RAM, and NVIDIA TITAN Xp GPU.  

2.7 Evaluation  

To quantify the impact of our method on segmentation performance, we trained the U-Net architecture with image-only 

input and optimized it separately. We compare the results based on image and points to the results based on image-only 

input. 

We compared the algorithm segmentation results against manual segmentation using Dice similarity coefficient10 (DSC), 

sensitivity (or recall) rate 11 (SR), and precision rate 11 (PR). DSC is the volume of the overlap between reference shape 

and segmentation shape divided by the average volume of the shapes. SR is the volume of the overlap divided by the 

reference volume, and PR is the volume of the overlap divided by the segmentation volume. 

3. RESULTS 

3.1 Training  

We train each CNN model in five different conditions based on the number of boundary points used for guiding the 

segmentation algorithm. In this study, we used 5, 10, 15, 20, and 30 boundary landmark points yielding five trained models 

for each architecture. We trained each model for up to 1000 epochs and used the highest validation DSC to choose the best 

trained model. Table I shows the highest validation DSC for each model.  

3.2 Testing results  

Table I shows the results of testing each trained model on our test set based on the three error metrics. The results illustrate 

a higher segmentation accuracy for points involved segmentations compare to image-only approach. Including more 

selected surface points yielded better segmentation performance from both models. Using two-tailed, heteroscedastic 

student's t-test12 for inter-model comparison in each of the five test groups indicates no statistically significant difference 

between the results of the two models (α = 0.05). The one-tailed t-test was used to compare the results of each model in 

each of the five groups to automatic segmentation. The null hypothesis was that the mean DSC value for automatic 

segmentation (𝐷𝑆𝐶𝑎) is equal to the mean DSC value for the tested model (𝐷𝑆𝐶𝑡), and the alternative hypothesis is that 

𝐷𝑆𝐶𝑡 is greater than 𝐷𝑆𝐶𝑎. The asterisk symbols on Figure 2 indicate where the null hypothesis was rejected (α = 0.05). 

For our proposed model (DIP U-Net), using 15 or more points improved the segmentation accuracy significantly compared 

to fully automatic segmentation. For U-Net we detected significant improvement over automatic segmentation when we 

involved 30 selected surface points. 
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On the test images, both models approach the inter-expert observer difference level when at least 15 surface points has 

been involved. These results suggest that the use of 15-20 sparse manually selected surface points achieves a segmentation 

performance close to manual segmentation. According to our previous studies13, 14, manual selection of 12 prostate surface 

points on both MRI and CT images could be done within 20 seconds, which is considerably shorter than the average time 

of manual prostate MRI segmentation, as reported in the literature15, 16. Therefore, we think minimal user interaction could 

be helpful to improve the segmentation accuracy significantly. 

Figure 3 shows the qualitative results of the automatic approach, Model I, and Model II for three sample test cases and 

compares them to the manual segmentation.  
 

Table I. Segmentation accuracy of the different models in comparison with automatic segmentation and inter-observer 

variability in manual segmentation. First observer’s manual segmentation labels were used as the reference labels. 

Model 

# 

Boundary 

Points 

Validation Test Exec. 

Time 

(s.) 
DSC 

(%) 

SR 

(%) 

PR 

(%) 

DSC 

(%) 

SR 

(%) 

PR 

(%) 

2nd Observer - 83.0 ± 5.8 75.5 ± 7.1 92.8 ± 8.9 87.0 ± 7.4 80.0 ± 11.2 96.4 ± 2.5 - 

Automatic - 83.5 ± 7.0 88.8 ± 5.3 80.0 ± 12.8 84.4 ± 10.8 91.7 ± 7.6 80.9 ± 17.1 0.8 

Model I 

(U-Net) 

5 83.0 ± 7.3 87.6 ± 5.4 80.4 ± 12.6 86.2 ± 8.9 92.2 ± 5.5 82.9 ± 14.3 0.8 

10 83.2 ± 7.5 90.0 ± 5.1 78.8 ± 12.4 85.3 ± 10.8 93.4 ± 5.2 80.9 ± 16.7 

15 83.3 ± 7.2 90.4 ± 4.8 78.4 ± 12.0 86.5 ± 8.6 92.5 ± 4.8 82.7 ± 13.7 

20 85.7 ± 5.8 90.8 ± 4.5 82.1 ± 10.2 86.6 ± 8.8 91.9 ± 4.6 83.2 ± 13.5 

30 86.8 ± 3.6 93.9 ± 2.7 81.2 ± 6.9 89.9 ± 2.9 92.8 ± 4.2 87.5 ± 5.1 

Model II 

(DIP U-Net) 

5 83.9 ± 6.0 88.4 ± 6.9 81.0 ± 10.0 87.5 ± 8.1 92.6 ± 5.0 84.4 ± 13.3 0.9 

10 84.7 ± 6.1 90.3 ± 4.9 80.7 ± 10.5 85.3 ± 10.1 92.7 ± 4.9 81.0 ± 15.5 

15 84.5 ± 5.7 89.9 ± 3.7 80.6 ± 10.3 88.1 ± 6.2 92.0 ± 5.3 85.4 ± 10.0 

20 84.2 ± 5.3 93.1 ± 3.8 77.5 ± 9.4 88.8 ± 4.6 93.7 ± 3.8 85.0 ± 8.3 

30 85.4 ± 5.0 92.1 ± 3.5 80.2 ± 9.1 88.8 ± 6.1 93.2 ± 4.4 85.8 ± 10.6 

4. DISCUSSION AND CONCLUSIONS 

We developed a new CNN architecture by adding a new contraction path to the conventional U-Net structure. We used 

this model to propose a new technique for incorporating the user selected point information into a convolutional neural 

network for image segmentation to improve the performance. The proposed 3D fully convolutional deep learning 

segmentation technique is able to segment the prostate in 3D MR image volumes under minimal observer supervision. The 

results of Figure 2 show using our approach could significantly improve the segmentation accuracy compared to automatic 

segmentation when 15 or more surface landmark points were used.  

The results of this study show that our approach for combining the deep learning-based automatic segmentation with the 

user interaction could improve the accuracy and robustness of the prostate MRI segmentation. Using DSC as the accuracy 

measurement metric, the results in Table I and Figure 2 show that by incorporating the input points, the accuracy increased 

and reached the inter-expert observer difference, and the standard deviation decreased. Lower standard deviation values 

indicate the increased robustness and reliability of the system. 

Both CNN models (Model I and Model II) could segment the prostate in less than a second, excluding the user interaction 

time. The measured execution times for U-Net and DIP U-Net (Table I) were 0.8 and 0.9 seconds, respectively. The slightly 

higher execution time of DIP U-Net is because of the higher number of layers in the network architecture compared to the 

U-Net architecture. The execution time did not depend on the number of the selected landmark points because regardless 

of the number of points, the points were provided to both networks as an input channel with the same size as the input MR 

image.  
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Figure 2. Supervised segmentation accuracy in terms of DSC in comparison with inter-expert observer difference (dashed 

line) and automatic segmentation (dotted line). The asterisk symbols indicate the significant improvement of segmentation 

performance compared to automatic segmentation (p < 0.05). 

4.1 Limitations  

The limitations of this study must be considered for interpretation of the achieved results. The proposed approach has been 

tested only on prostate MRI dataset. To confirm the hypothesis of this work, it is required to test the proposed network on 

different datasets. Moreover, in this study we assumed that the number of the selected points were constant and they were 

uniformly distributed on the prostate surface. However, in a real situation, the physician may select a different number of 

points for each patient, which are not necessarily well distributed on the prostate surface. Therefore, an observer study is 

required to confirm the effectiveness of this approach for prostate segmentation in a real clinical situation. In addition, 

although our previous studies13, 14, 17 showed that using minimal user interaction for prostate segmentation could 

substantially speed up the process when compared to manual segmentation time, the observer study must confirm that for 

this study.   

4.2 Conclusions  

We presented a new approach to include user input into deep learning segmentation algorithms. We guided the CNN by 

involving a set of sparse surface points as an input of the network. We also developed a new CNN architecture by adding 

a new contraction path to the conventional U-Net structure and compared the performance of the presented model to U-

Net. The results show statistically significant improvement in segmentation accuracy for the proposed CNN when 

compared to the automatic segmentation method of U-Net. The results also suggest that the presented architecture 

outperformed U-Net when there were fewer surface points involved. The proposed approach can be easily applied to 

different imaging methods and medical image segmentation applications to improve their performance and facilitate the 

adoption of the algorithms by clinical end users. 

U-Net

DIP U-Net
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Figure 3. Qualitative segmentation results for two test patients (semi-transparent, purple shapes) compared to manual 

segmentation reference #1 (green solid shapes). First column shows the automatic segmentation results using U-Net, the 

second and third column shows the supervised segmentation results using 20 selected surface points (shown with yellow 

dots) based on U-Net and DIP U-Net, respectively, and the last column compares the two manual segmentation labels. 
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