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ABSTRACT  

Segmentation of the uterine cavity and placenta in fetal magnetic resonance (MR) imaging is useful for the detection of 

abnormalities that affect maternal and fetal health. In this study, we used a fully convolutional neural network for 3D 

segmentation of the uterine cavity and placenta while a minimal operator interaction was incorporated for training and 

testing the network. The user interaction guided the network to localize the placenta more accurately. We trained the 

network with 70 training and 10 validation MRI cases and evaluated the algorithm segmentation performance using 20 

cases. The average Dice similarity coefficient was 92% and 82% for the uterine cavity and placenta, respectively. The 

algorithm could estimate the volume of the uterine cavity and placenta with average errors of 2% and 9%, respectively. 

The results demonstrate that the deep learning-based segmentation and volume estimation is possible and can potentially 

be useful for clinical applications of human placental imaging. 

Keywords: Convolutional neural network, image segmentation, placenta, uterus, fetal magnetic resonance imaging.   

1. INTRODUCTION  

The placenta is a critical and complex organ that provides oxygen and nutrition to the growing fetus and removes waste 

from its blood. Three-dimensional (3D) segmentation of placenta in magnetic resonance (MR) images is useful in studying 

conditions that result in pregnancy and birth complications such as placenta accreta spectrum (PAS), fetal growth 

restriction, and intrauterine fetal death1, 2. However, manual segmentation of the placenta is time-consuming with high 

inter- and intra-observer variability3.  

This is the first time that a multi-class segmentation has been presented for uterine cavity and placenta segmentation in 

pregnant women. Although there were efforts to develop computerized algorithms to segment the placenta in MRI,4, 5 

either the accuracy of the presented methods was low (Dice coefficient 6 is about 72% 5) or the computational time is high 

(one to two minutes/volume in average) and required multiple image volumes (sagittal and axial acquisitions) 4. The size 

of the dataset (16 images) was another limitation of a previous study 4. There are also a few algorithms presented in the 

literature for uterine segmentation in MRI7, 8 in non-pregnant women. Namias et al.7 used a local binary pattern-based 

texture feature extraction to segment the uterus. They tested their algorithm on nine patients and reported a Dice coefficient 

of 81%. Kurata et al.8 used a deep learning algorithm for uterine segmentation in MRI using U-Net architecture. They 

tested their method on 122 MR images acquired from 72 patients with benign or malignant tumors and 50 healthy cases. 

They reported Dice coefficients of 84% and 78% for patients and healthy cases, respectively. They also reported the 

average mean absolute distance but in pixel units while their voxel size was not consistent across the image dataset. 

Deep learning-based approaches demonstrated a strong capability for fast segmentation of medical images with high 

accuracy. We present an automatic 3D deep learning-based multi-label segmentation algorithm for fast, accurate, and 

repeatable 3D segmentation of the uterine cavity and placenta in MRI. We modified U-Net architecture to present a 3D 

end-to-end fully convolutional neural network for 3D image segmentation. We used minimal operator inputs to improve 

the segmentation performance.  
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2. METHODS 

2.1 Data 

Our dataset contained 100 3D uterus MRIs from 100 pregnant women. Each image volume had 28 to 52 two-dimensional 

(2D) transverse slices. For 99 cases, each slice was originally 256 × 256 pixels in size. For one case, the slice size was 212 

× 256 pixels. We resized that image to 256 × 256 by zero-padding to make the slice size consistent across the dataset. The 

axial image slice spacing for all the images were 7.0 mm and the pixels were isotropic for all the slices with resolutions 

ranging from 1.0547 × 1.0547 mm2 to 1.7188 × 1.7188  mm2. For each image, the uterine cavity and placenta were 

manually segmented by an expert radiologist.  

2.2 User interaction 

For each test image, the operator selected the first (superior-most) and last (inferior-most) slices of the uterine cavity. This 

information was used for image block extraction explained in the preprocessing subsection. In addition, the first (superior-

most) and last (inferior-most) slices of the placenta were selected for each patient, and the center of the placenta tissue was 

estimated on both slices. Then three image slices, evenly spaced between the two selected slices, were automatically 

selected and the operator was asked to define the approximate center of the placenta tissue on each of the three slices. 

Therefore, the operator needed to browse through the image slices and click seven times in total; twice for the uterus 

bounding box, and five times for the placenta bounding box and center points. In this study, we simulated the operator 

interaction by selecting a point defined for each slice randomly from the 5% of the placenta tissue pixels around the tissue 

center on the slice (see Figure 1A). Therefore, there are 5 points selected on placenta tissue. We use linear interpolation to 

define one point per placenta slice. To provide this information as an input, we made a binary image volume with the same 

size of the MR image and assigned ones to the voxels that are selected as center points on each slice and zeros to all the 

other voxels. We applied the Euclidean distance transform to this binary image and used the result as the second channel 

of input. 

 

Figure1. (A) Simulating user manual interaction. The yellow solid contour show the placenta, the green, hashed area is 

the 5% placenta’s central pixels, and the purple cross is the randomly selected point within that area. (B) Image blocks 

extraction. 

2.3 Preprocessing 

We applied a median filter to all the 2D image slices under a 3 × 3 window to reduce the noise while preserving the edges. 

Then, we truncated and normalized the voxel intensity distribution of each image as shown in equation (1), whichhelps to 

reduce the effect of background voxels and makes the intensity distribution more consistent across the image dataset: 

 𝐼𝑖(𝑥, 𝑦, 𝑧) =  {

0, 𝐼𝑖(𝑥, 𝑦, 𝑧) < 𝑝5(𝐼𝑖)

1, 𝐼𝑖(𝑥, 𝑦, 𝑧) > 𝑝99.9(𝐼𝑖)
𝐼𝑖(𝑥,𝑦,𝑧)−𝑝5(𝐼𝑖)

𝑝99.9(𝐼𝑖)−𝑝5(𝐼𝑖)
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (1) 

A B
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Here. 𝐼𝑖(𝑥, 𝑦, 𝑧) represents the ith image in the image dataset, and 𝑝5(𝐼𝑖) and 𝑝99.9(𝐼𝑖) are the 5th and 99.9th percentiles of 

the pixel intensities in the image, respectively. 𝐼𝑖(𝑥, 𝑦, 𝑧) is the normalized image. 

To reduce the inter-subject variability in placenta intensity, we linearly scaled the intensities of the voxels to make the 

average intensity of the selected center points and a set of voxels around them with in-plane distances of less than three 

pixels a constant value (𝑖)̅ across the image set. We change them to the average placenta intensity of one sample image 

(here 𝑖̅ = 0.154). 

There is a full-overlap between the placenta and uterine cavity. To make the segmentation labels independent from each 

other with no overlap (one-hot encoding), we used the portion of the uterus that was not covered by the placenta as the 

uterine cavity channel and we made a three-channel label which included background, uterine cavity (with no overlap with 

placenta), and placenta labels. 

We randomly divided the image dataset to 70 training, 10 validation, and 20 test images. We used data augmentation to 

double the number of data using left-to-right flipping of the images, yielding 140 training, 20 validation, and 40 test images.  

We used a block-based segmentation approach by extracting a set of 3D five-slice blocks from the images. Each block 

(𝐵𝑖
𝑘) contained five sequential 2D axial slices and the uterus has been seen in at least one of the slices. For each image, the 

adjacent blocks defined with four-slice overlaps (Figure 1B). We applied the same process for extracting blocks from the 

second input channel. 

2.4 Fully convolutional neural network architecture 

In this study, we used a customized version of U-Net 9 which is a fully convolutional neural network (FCNN). We modified 

the architecture to make it 3D and used that for multi-label image segmentation. Figure 2 shows the architecture of the 

proposed network. The network is a four-level U-Net model with 21 layers including 18 convolutional and three max pool 

layers. We kept the size of the output channels for all the convolutional layers the same as the input channels by zero-

padding the input channel before convolution. For the two upper levels, we used a convolution kernel size of 5×5×3, and 

for the two lower levels we used kernel size of 3×3×3. We applied a dropout rate to the neurons of 10 layers shown in 

Figure 2. The input has two channels, the 3D image blocks of the MRI and the points’ distance mask. The output has three 

channels, one for background, one for uterine cavity and one for the placenta. 

Due to an imbalance between the number of background and foreground (placenta and uterus) voxels, we used a loss 

function based on Dice similarity coefficient6 (DSC): 

 𝐿 = 1 −
2 ∑ ∑ ∑ [𝑝(𝐼𝑥,𝑦,𝑧).𝐺𝑥,𝑦,𝑧]𝑧𝑦𝑥

∑ ∑ ∑ [𝑝(𝐼𝑥,𝑦,𝑧)]𝑧𝑦𝑥 +∑ ∑ ∑ [𝐺𝑥,𝑦,𝑧]𝑧𝑦𝑥
, (2) 

where 𝑝(𝐼𝑥,𝑦,𝑧) is the probability value of the output probability map corresponds to the input image (𝐼𝑥,𝑦,𝑧) at (𝑥, 𝑦, 𝑧) and 

𝐺𝑥,𝑦,𝑧 is the value of the reference binary mask at (𝑥, 𝑦, 𝑧). To avoid bias toward placenta or uterine cavity segmentation, 

we calculated two loss values, 𝐿𝑢𝑡𝑒𝑟𝑢𝑠 for uterine cavity and 𝐿𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎 for placenta. We used the average of the losses as 

the total loss. The loss was calculated at block-level during training. For optimization, during training, we used the 

Adadelta10 gradient-based optimizer.  

2.5 Implementation details 

We used TensorFlow11 machine learning system to implement the 3D U-Net model in Python platform on a high-

performance computer with 512 GB of memory and NVIDIA TITAN Xp GPU. We used a batch size of five and an initial 

learning rate of 1.0, with a dropout rate of 40%, and the decay rate and epsilon conditioning parameters for Adadelta 

optimizer of 0.9 and 1×10-10, respectively. 

2.6 Post-processing and evaluation  

After testing the network on the 3D image blocks of an MR image, we integrated the results by averaging the probabilities 

over the overlapped slices results to a probability map for the whole image. We applied a similar process to the flipped 

version of the image and to improve the segmentation result we used the average of the output probabilities corresponded 

to that image and the flipped image as the final probability map. Thresholding was applied to build output binary masks 
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out of the probability maps which were then compared against manual segmentation labels. Our segmentation error metrics 

included the DSC and signed volume difference (∆𝑉): 

 ∆𝑉 = 𝑉𝑠𝑒𝑔 − 𝑉𝑟𝑒𝑓, (3) 

where 𝑉𝑠𝑒𝑔 is the volume of the object on the output segmentation label and 𝑉𝑟𝑒𝑓  is the volume of the object on the manual 

segmentation label. We reported DSC in percent and ∆𝑉 in cm3 and percent. 

 

 

Figure 2. The FCNN architecture (3D U-Net).  

3. RESULTS 

3.1 Training and testing results  

We trained the network until we reached the highest validation accuracy at epoch 530. The image block-level training and 

validation DSCs were 93.2% and 86.7%, respectively. 

We segmented all the validation and test images using the saved model. Table I shows the results. The metric values in the 

table are all at image-level. The total computational time for segmenting a 3D image was 25 seconds on average. The 

volume of the uterine cavity ranged from 818 cm3 to 3993 cm3 and the volume of placenta ranged from 161 cm3 to 1149 

cm3 for the test dataset based on the manual segmentation labels. Figure 3 and Figure 4 show the qualitative results for 

four sample cases in 3D and on 2D axial slices, respectively. 

Although the DSC value for placenta segmentation is about 10% lower than that of uterine cavity segmentation, the 

qualitative results show that the algorithm could localize the placenta correctly and ∆𝑉 values show an accurate estimation 

of placenta size (|∆𝑉|<10%). 

 

Table I. Validation and test results for the uterine cavity and placenta with standard deviations. 

Data set N 

Uterine cavity Placenta 

DSC 

(%) 

ΔV 

(cm3) 

ΔV 

(%) 

DSC 

(%) 

ΔV 

(cm3) 

ΔV 

(%) 

Validation 10 92.2 ± 5.1 40 ± 141 3 ± 9 81.6 ± 8.3 0 ± 106 1 ± 24 

Test 20 92.0 ± 4.3 6 ± 254 2 ± 12 81.9 ± 6.1 -53 ± 100 -9 ± 16 

 

N×N Convolution N×N×3, ReLU

Down-sampling

Deconvolution 2×2×1 and up-sampling, ReLU

Convolution 1×1×1, softmax, and thresholding

+ Crop and concatenation

Feature maps

Feature maps (dropout applied)

Feature maps (copied from contracting path)

5×5 5×5

5×5

+

256 × 256 × 5

32 32

32

  

+

64

3×3 + 3×3 3×3

5×5 5×5

5×5 5×5

128

128

128+128 128 128

64+64 64 64

32+32 32 32

256

5×5

3×3

128

3×33×3

256

64

128 × 128 × 5

64 × 64 × 5

32 × 32 × 5

MR image Distance mask Background Uterine cavity Placenta

Output
(Three channels)

Input
(Two channels)

256 × 256 × 5
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Figure 3. Qualitative results of the uterus and placenta segmentation in 3D. Each row shows the results for one patient. 

For the first two columns, the blue, semi-transparent shapes show the uterine cavity and the solid, red shapes show the 

placenta. For the last two columns, the green, solid shapes show the manual segmentations and the semi-transparent, purple 

shapes show the algorithm segmentation results. 

Reference Algorithm Uterine Cavity Placenta
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Figure 4. Qualitative results of the uterus and placenta segmentation in 2D. Each row shows the results for one patient on 

five sample axial slices from inferior (left) to superior (right). The semi-transparent green (bright) and red (dark) regions 

show the algorithm segmentation results for uterine cavity and placenta, respectively. The solid green (bright) and red 

(dark) contours show the manual segmentation provided by the expert observer for uterine cavity and placenta, 

respectively. 

4. DISCUSSION 

The proposed, full 3D fully convolutional deep learning multi-class segmentation technique is able to segment the uterine 

cavity and placenta in 3D MR image volumes with high segmentation accuracy using a single CNN model. We incorporate 

observer interaction for initializing the CNN to improve the results and make the algorithm more reliable for clinical 

assessments. We included the user interaction as the second channel of the CNN input. We could achieve test DSC of 92% 

and 82% for uterine cavity and placenta, respectively, with the absolute volume difference (|∆𝑉|) of less than 10%. The 

accuracy of the algorithm was substantially higher than the reported results in the literature. The qualitative results in 

Figure 3 show that the method could segment both the uterine cavity and placenta with acceptable quality. The algorithm 

detected the shape and position of the uterus and placenta correctly. Therefore, the algorithm could also be helpful for 

detecting those abnormalities that are diagnosed based on the relative position of the placenta within the uterine cavity. In 

some of the results shown in Figure 3 (e.g., the uterine cavity in the last row) there are some small, incorrectly segmented 
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objects seen close to the region of interest that increased the false-positive rate and decreased the measured segmentation 

accuracy. An extra post-processing step could remove them and increase the accuracy.  

We used a 3D block-based segmentation approach for better adaptability of the method for image volumes with different 

numbers of slices. The block-based approach also improved the segmentation accuracy by averaging the output 

probabilities for the overlapped regions of the blocks. 

The average computation time per patient was about 25 seconds which is substantially lower than manual segmentation 

time. However, it is required to measure user interaction time to confirm using this segmentation method could decrease 

the segmentation time substantially.  

4.1 Limitations  

The small size of the training set is the main limitation of this study. Since there is high inter-subject variability in placenta 

shape and position, the training set must be large enough to represent all the shape and location variations of the placenta 

within the uterine cavity. Moreover, the pregnancy stages affect the fetus's size, appearance, and orientation. This could 

directly impact the segmentation performance of the algorithm. Using separate CNN models for each pregnancy trimester, 

when a large training dataset is available, could be helpful for more accurate segmentation performance. The other 

limitation of this work is the block-based segmentation approach. Although it helped with algorithm implementation and 

improved the accuracy, it increased the segmentation time and added more computations for integrating the block-level 

results. We also need to design a user study to test the hypothesis in a more realistic situation. The current results were 

achieved based on a simulation of the user interaction. 

5. CONCLUSIONS 

We proposed a modified U-Net based deep learning approach for simultaneous 3D segmentation of the uterine cavity and 

placenta in MRI. We guided the FCNN training and test by incorporating minimal user inputs (seven clicks) for more 

robust and reliable segmentation performance. The results showed accurate segmentation performance of the algorithm 

with average DSC values of 92% and 82% for uterine cavity and placenta, respectively.  The segmentation method is able 

to measure placenta size and assess its location, which is a first step  in the application of textural analysis radiomics within 

the segmentation to aid in the diagnosis of placenta abnormalities. The future work will be focused on testing the algorithm 

on a larger dataset and measuring user interaction time.  

ACKNOWLEDGMENTS 

This research was supported in part by the U.S. National Institutes of Health (NIH) grants (R01CA156775, R01CA204254, 

R01HL140325, and R21CA231911) and by the Cancer Prevention and Research Institute of Texas (CPRIT) grant 

RP190588.

 

REFERENCES 

[1] Leyendecker, J. R., DuBose, M., Hosseinzadeh, K., Stone, R., Gianini, J., Childs, D. D., Snow, A. N., and Mertz, 

H., “MRI of pregnancy-related issues: abnormal placentation,” American Journal of Roentgenology, 198(2), 311-

320 (2012). 

[2] Maldjian, C., Adam, R., Pelosi, M., Pelosi III, M., Rudelli, R. D., and Maldjian, J., “MRI appearance of placenta 

percreta and placenta accreta,” Magnetic resonance imaging, 17(7), 965-971 (1999). 

[3] Dahdouh, S., Andescavage, N., Yewale, S., Yarish, A., Lanham, D., Bulas, D., du Plessis, A. J., and 

Limperopoulos, C., “In vivo placental MRI shape and textural features predict fetal growth restriction and 

postnatal outcome,” Journal of Magnetic Resonance Imaging, 47(2), 449-458 (2018). 

[4] Wang, G., Zuluaga, M. A., Pratt, R., Aertsen, M., Doel, T., Klusmann, M., David, A. L., Deprest, J., Vercauteren, 

T., and Ourselin, S., “Slic-Seg: A minimally interactive segmentation of the placenta from sparse and motion-

corrupted fetal MRI in multiple views,” Medical image analysis, 34, 137-147 (2016). 

Proc. of SPIE Vol. 11314  113141R-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 07 May 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

[5] Alansary, A., Kamnitsas, K., Davidson, A., Khlebnikov, R., Rajchl, M., Malamateniou, C., Rutherford, M., 

Hajnal, J. V., Glocker, B., and Rueckert, D., "Fast fully automatic segmentation of the human placenta from 

motion corrupted MRI." International Conference on Medical Image Computing and Computer-Assisted 

Intervention, 589-597 (2016). 

[6] Dice, L. R., “Measures of the amount of ecologic association between species,” Ecology, 26(3), 297-302 (1945). 

[7] Namías, R., Bellemare, M.-E., Rahim, M., and Pirró, N., "Uterus segmentation in dynamic MRI using lbp texture 

descriptors." 9034, Medical Imaging 2014: Image Processing, 90343W (2014). 

[8] Kurata, Y., Nishio, M., Kido, A., Fujimoto, K., Yakami, M., Isoda, H., and Togashi, K., “Automatic segmentation 

of the uterus on MRI using a convolutional neural network,” Computers in biology and medicine, 114, 103438 

(2019). 

[9] Ronneberger, O., Fischer, P., and Brox, T., "U-net: Convolutional networks for biomedical image segmentation." 

International Conference on Medical image computing and computer-assisted intervention, 234-241 (2015). 

[10] Zeiler, M. D., “ADADELTA: an adaptive learning rate method,” arXiv preprint arXiv:1212.5701, (2012). 

[11] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., and Isard, 

M., "Tensorflow: a system for large-scale machine learning." 16, OSDI, 265-283 (2016). 

 

Proc. of SPIE Vol. 11314  113141R-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 07 May 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


