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Abstract
Background. Isocitrate dehydrogenase (IDH) mutation status has emerged as an important prognostic marker in 
gliomas. Currently, reliable IDH mutation determination requires invasive surgical procedures. The purpose of 
this study was to develop a highly accurate, MRI-based, voxelwise deep-learning IDH classification network using 
T2-weighted (T2w) MR images and compare its performance to a multicontrast network.
Methods. Multiparametric brain MRI data and corresponding genomic information were obtained for 214 subjects 
(94 IDH-mutated, 120 IDH wild-type) from The Cancer Imaging Archive and The Cancer Genome Atlas. Two separate 
networks were developed, including a T2w image-only network (T2-net) and a multicontrast (T2w, fluid attenuated 
inversion recovery, and T1 postcontrast) network (TS-net) to perform IDH classification and simultaneous single 
label tumor segmentation. The networks were trained using 3D Dense-UNets. Three-fold cross-validation was per-
formed to generalize the networks’ performance. Receiver operating characteristic analysis was also performed. 
Dice scores were computed to determine tumor segmentation accuracy.
Results. T2-net demonstrated a mean cross-validation accuracy of 97.14% ± 0.04 in predicting IDH mutation 
status, with a sensitivity of 0.97 ± 0.03, specificity of 0.98 ± 0.01, and an area under the curve (AUC) of 0.98 ± 0.01. 
TS-net achieved a mean cross-validation accuracy of 97.12% ± 0.09, with a sensitivity of 0.98 ± 0.02, specificity of 
0.97 ± 0.001, and an AUC of 0.99 ± 0.01. The mean whole tumor segmentation Dice scores were 0.85 ± 0.009 for 
T2-net and 0.89 ± 0.006 for TS-net.
Conclusion. We demonstrate high IDH classification accuracy using only T2-weighted MR images. This  
represents an important milestone toward clinical translation.

Key Points

1.  IDH status is an important prognostic marker for gliomas. 
2. � We developed a non-invasive, MRI based, highly accurate deep-learning method for the 

determination of IDH status. 
3. �The deep-learning network utilizes only T2-weighted MR images to predict IDH status, 

thereby facilitating clinical translation.
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Isocitrate dehydrogenase (IDH) mutation status has emerged 
as one of the most important markers for glioma diagnosis 
and therapy. Gliomas with this mutant enzyme have a better 
prognosis than tumors of the same grade with wild-type 
IDH. This observation led the World Health Organization to 
revise its classification of gliomas in 2016.1 IDH mutated tu-
mors also have different management and therapeutic ap-
proaches than tumors with wild-type mutation status. At the 
present time, the only way to definitively identify an IDH mu-
tated glioma is to perform immunohistochemistry (IHC) or 
gene sequencing on a tissue specimen, acquired through bi-
opsy or surgical resection. Because the differences between 
IDH mutated and IDH wild-type gliomas may have critical 
treatment implications, there is great interest in attempting 
to distinguish between these two tumor types prior to sur-
gery. This becomes even more important for brain tumors 
that are inaccessible for biopsy or resection due to a high 
risk of severe postoperative complications and impairment.

MR spectroscopy can potentially be used to determine 
IDH mutation status. The mutant IDH enzyme catalyzes 
the production of the oncometabolite 2-hydroxyglutarate 
(2-HG).2 MR spectroscopic methods have been developed 
for identification of 2-HG3–6 non-invasively in brain tumors. 
While these methods appear to work well in a research set-
ting, in the busy clinical environment the spectroscopic 
imaging data are frequently uninterpretable due to arti-
fact, patient motion, poor shimming, small voxel sizes, 
non-ideal tumor location, or presence of hemorrhage or 
calcification affecting measurements. Even in the setting 
of good quality spectra, reliable clinical implementation 
using 2-HG spectroscopy is further compounded by the re-
cently described high false positive rate of over 20% using 
this technique in the best hands.7

Early determination of IDH mutation status directly im-
pacts treatment decisions. Tumors that appear to be low-
grade gliomas but are IDH wild-type are typically treated 
with early intervention rather than observation. Specific 
chemotherapeutic interventions are more effective in IDH-
mutated gliomas (eg, temozolomide).8–12 Additionally, sur-
gical resection of non-enhancing tumor volume (beyond 
gross total resection of enhancing tumor components) in 
grades III–IV IDH-mutated tumors has been demonstrated 
to have a survival benefit.13 However, the determination of 
IDH mutation status continues to be performed using di-
rect tissue sampling. Obtaining tumor-rich tissue samples 

for determining IDH status can be a challenge. A  report 
from The Cancer Genome Atlas (TCGA) suggests that only 
35% of biopsy samples contain sufficient tumor content for 
appropriate molecular characterization.14 The development 
of a robust non-invasive approach would be beneficial in 
the care of these patients.

Advances in deep-learning methods are outperforming 
traditional machine-learning methods in predicting the 
genetic and molecular biology of tumors based on MRI. 
For example, Zhang et  al used a radiomics approach in-
tegrating a support vector machine‒based model and 
multimodal MRI features with an accuracy of 80% for IDH 
detection.15 In another study using multimodal MRI, clinical 
features, and a random forest machine learning algorithm, 
Zhang et al were able to obtain 86% accuracy in predicting 
IDH mutation status.16 In that study, the highest predictive 
features included age, parametric intensity, texture, and 
shape features. Recent studies by Chang et al have used 
deep-learning techniques to non-invasively determine 
IDH mutation status based on MRI, with accuracies of 94% 
using the database of The Cancer Imaging Archive (TCIA).17 
Unfortunately, none of these methods are clinically viable, 
requiring either manual pre-segmentation of the tumor, 
extensive preprocessing, or multicontrast acquisitions that 
are frequently affected by patient motion due to the long 
scan times. Additionally, these existing methodologies use 
a 2D (slice-wise) classification approach. A known limita-
tion in designing and developing a slice-wise classification 
model is the data leakage problem.18,19 Two-dimensional 
slice-wise models working with cross-sectional imaging 
data are particularly prone to data leakage because they 
perform slice randomization across all subjects to generate 
the training, validation, and testing slices. As a result, ad-
jacent slices from the same subject may be found in the 
training, validation, or testing data subset. Because adja-
cent slices often share considerable information, this meth-
odology may artificially boost accuracies by introducing 
bias into the testing phase. The previously reported studies 
do not appear to adhere to this caveat, potentially resulting 
in artificially boosted accuracies.

The purpose of this study is to develop a highly accu-
rate fully automated deep learning IDH classification 3D 
network using T2-weighted (T2w) images only and com-
pare its performance to a multicontrast 3D network. The 
use of T2 images only provides strong clinical translation 

Importance of the Study

One of the most important recent discoveries in brain 
glioma biology has been the identification of IDH mu-
tation status as a marker for therapy and prognosis. 
The mutated form of the gene confers a better prog-
nosis and treatment response than do gliomas with 
the non-mutated or wild-type form. Currently, the only 
reliable way to determine IDH mutation status is to 
obtain glioma tissue either via an invasive brain bi-
opsy or following open surgical resection. The ability 
to non-invasively determine IDH mutation status has 

significant implications in determining therapy and 
predicting prognosis. We developed a highly accurate, 
deep-learning network that utilizes only T2-weighted 
MR images and outperforms previously published 
methods. The high IDH classification accuracy of our 
T2w image-only network (T2-net) marks an important 
milestone toward clinical translation. Imminent clinical 
translation is feasible because T2-weighted MR im-
aging is widely available and routinely performed in the 
assessment of gliomas.
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capability. T2 images are routinely acquired as part of any 
MRI brain tumor evaluation. These images are robust to 
motion and can be obtained within 2 minutes. On modern 
MRI scanners available in most clinical settings, high 
quality T2w images can be obtained even in the presence 
of active patient motion using commonly available motion 
resistant acquisition techniques.20

Materials and Methods

Data and Preprocessing

Multiparametric brain MRI data of glioma patients were 
obtained from the database of TCIA.21 Genomic informa-
tion was provided from the database of TCGA.22 Only 
preoperative studies were used. Studies were screened 
for the availability of IDH status and T2w, T2w–fluid atten-
uated inversion recovery (FLAIR), and contrast enhanced 
T1-weighted (T1c) image series. The final dataset included 
214 subjects (94 IDH-mutated, 120 IDH wild-type). TCGA 
subject IDs, IDH mutation status, 1p/19q codeletion status, 
histology, and clinical variables including age, gender, 
survival months, and Karnofsky performance scores 
are listed in Supplementary Table 1. The average age of 
the cohort was 52 ± 15 years, with 48% female subjects. 
Histologically, 49% of tumors were glioblastomas, 22% 
were oligodendrogliomas, 15% were astrocytomas, and 
14% were oligoastrocytomas, with 48% of tumors grade 
IV, 27% grade III, and 24% grade II. In this cohort 56% of 
tumors were IDH wild-type, 42% were IDH1 mutant, and 
1.9% were IDH2 mutant. Since the vast majority of IDH 
mutations were IDH1, both IDH1 and IDH2 mutants were 
considered as one group; 86% of the IDH mutated cases 
did not have 1p/19q codeletions, while 14% did. IDH muta-
tion status provided in TCGA was determined using Sanger 
sequenced DNA methods and exome sequencing of whole 
genome amplified DNA. The Sanger method is considered 
the gold standard in genetic analysis.23,24

Tumor masks for 87 subjects were available through 
previous expert segmentation.25,26 Tumor masks for the 
remaining 127 subjects were manually drawn and val-
idated by in-house neuroradiologists. The tumor masks 
were used as the ground truth for the tumor segmen-
tation in the training step. Ground truth whole tumor 
masks for IDH mutated type were labeled 1 and the 
ground truth tumor masks for IDH wild-type were labeled 
2 (Fig. 1). Data preprocessing was minimal, including (i) 
N4BiasCorrection to remove radiofrequency inhomoge-
neity, (ii) co-registration of multicontrast data to the T1c 
(for TS-net only), and (iii) intensity normalization to zero-
mean and unit variance.27 Preprocessing was developed 
using the Advanced Normalization Tools (ANTs) software 
routines28 and took less than 5 minutes per dataset.

Network Details

Two separate networks were developed. These were a 
T2w image-only network (T2-net) trained only on the 
T2w images (Fig. 2A) and a 3-sequence network (TS-net) 
trained on multicontrast MR data including T2w images, 

T2w-FLAIR, and T1c. A 3D 32×32×32 patch-based training 
and testing approach was implemented for both networks. 
Dense-UNets were designed and trained for a voxelwise 
dual-class segmentation of the whole tumor with classes 
1 and 2 representing IDH mutated and IDH wild-type, re-
spectively. The schematics for the network architecture 
are shown in Fig. 2B. Each network consisted of 7 dense 
blocks: 3 transition down blocks, 3 transition up blocks, an 
initial convolution layer, and a final convolution layer fol-
lowed by an activation layer at the end. Each dense block 
was made up of 5 layers. Each layer was connected to 
every other layer in that particular dense block. This dense 
connection was implemented by concatenating the fea-
ture maps from one layer with feature maps from every 
other layer of that dense block. The input to a dense block 
was also concatenated with the output of that dense block. 
Every dense block on the encoder part of the network was 
followed by a transition down block, while every dense 
block on the decoder part of the network was preceded 
by a transition up block. The bottleneck block was used to 
keep the convolution layers to a smaller number in order 
to avoid having large convolution layers. With these con-
necting patterns, all feature maps were reused such that 
every layer in the architecture received a direct supervision 
signal.29 A detailed description of the network is given in 
the Supplementary Material.

Network Implementation and Cross-Validation

To generalize the reliability of the networks, a 3-fold cross-
validation was performed on the 214 subjects by randomly 
shuffling the dataset and distributing it into 3 groups (ap-
proximately 70 subjects for each group). During each fold 
of the cross-validation procedure, the 3 groups are alter-
nated between training, in-training validation, and held-
out testing. Group 1 had 72 subjects (32 IDH mutated, 40 
IDH wild-type), Group 2 had 71 subjects subjects (31 IDH 
mutated, 40 IDH wild-type), and Group 3 had 71 subjects 
(31 IDH mutated, 40 IDH wild-type). The in-training val-
idation set helps improve network performance during 

  

IDH Mutated
type

IDH Wild
type

Fig. 1  Ground truth whole tumor masks. Red voxels represent 
IDH mutated (value of 1) and green voxels represent IDH wild-type 
(value of 2). The ground truth labels have the same mutation status 
for all voxels in each tumor.
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training. Note that each fold of the cross-validation pro-
cedure represents a new training phase on a unique com-
bination of the 3 groups. Network performance is only 
reported, however, on the held-out testing group for 
each fold (which is never seen by the algorithm during 
training for that fold). Supplementary Table 1 lists the 
group membership for each fold of the cross-validation. 
The in-training validation dataset is used by the algorithm 
to test performance after each round of training and up-
date model parameters. It is not a true held-out dataset 
because the algorithm adjusts its performance based on 
the results in each round from the in-training validation 
dataset. Once the algorithm has completed all rounds of 
training, it is evaluated on the true held-out dataset to de-
termine performance.

Seventy-five percent overlapping patches were extracted 
from the training and in-training validation subjects. To 
avoid the data leakage problem, no patch from the same 
subject was mixed with the training, in-training valida-
tion, or testing dataset.18,19 The data augmentation steps 
included horizontal flipping, vertical flipping, and random 
and translational rotation. Data augmentation provided 
a total of approximately 150 000 patches for training and 
150 000 patches for in-training validation. Networks were 
implemented using Keras30 and Tensorflow31 with an 
adaptive moment estimation optimizer (Adam).32 The ini-
tial learning rate was set to 10−5 with a batch size of 4 and 
maximal iterations of 100. Initial parameters were chosen 
based on previous work with Dense-UNets using brain im-
aging data and semantic segmentation.29,33

  

T2w Image

Input
Images

Output
Predictions

AL

Final ConvInitial Conv

Dense Block 1

TD Block 1

Dense Block 2

TD Block 2

TD Block 3

Dense Block 3

Dense Block Activation layer
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Dense Block 6
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Volume
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part of the
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Fig. 2  (A) T2-net overview. Voxelwise classification of IDH mutation status is performed to create 2 volumes (IDH mutated and IDH wild-type). 
Volumes are combined using dual volume fusion to eliminate false positives and generate a tumor segmentation volume. Majority voting across 
voxels is used to determine the overall IDH mutation status. (B) Network architecture for T2-net and TS-net. 3D Dense-UNets were employed with 
7 dense blocks, 3 transition down blocks, and 3 transition up blocks.
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Each network yields 2 segmentation volumes. Volume 1 
provides the voxelwise prediction of IDH mutated tumor, 
and volume 2 identifies the predicted IDH wild-type tumor 
voxels. A  straightforward dual-volume fusion (DVF) ap-
proach was developed to combine the 2 segmentation 
volumes. Both the volumes were combined and the lar-
gest connected component was obtained using a 3D con-
nected component algorithm in MatLab. The combined 
volumes provided a single tumor segmentation map. 
Majority voting over the voxelwise classes of IDH mutated 
or IDH wild-type provided a single IDH classification for 
each subject. Networks were implemented on Tesla P100, 
P40, and K80 NVIDIA graphic processing units (GPUs). The 
IDH classification process developed is fully automated, 
and a tumor segmentation map is a natural output of the 
voxelwise classification approach.

Statistical Analysis

Statistical analysis was performed in MatLab and R for 
T2-net and TS-net separately. The accuracy of the 2 net-
works was evaluated with majority voting (ie, voxelwise 
cutoff of 50%). This threshold was then used to calculate the 
accuracy, sensitivity, specificity, positive predictive value 
(PPV), and negative predictive value (NPV) of the model for 
each fold of the cross-validation procedure. A receiver op-
erating characteristic (ROC) curve was also calculated for 
each fold. A detailed description of the ROC methodology 
is provided in the Supplementary Material. To evaluate 
the performance of the networks for tumor segmentation, 
the Dice score was used. The Dice score determines the 
amount of spatial overlap between the ground truth seg-
mentation and the network segmentation.

Results

T2-Net

T2-net achieved a mean cross-validation testing accuracy 
of 97.14% across the 3 folds (97.18%, 97.14%, and 97.10%, 
SD  =  0.04). Mean cross-validation sensitivity, specificity, 
PPV, NPV, and AUC for T2-net were 0.97 ± 0.03, 0.98 ± 0.01, 
0.98 ± 0.01, 0.97 ± 0.01, and 0.98 ± 0.01, respectively. The 
mean cross-validation Dice score for tumor segmentation 
was 0.85 ± 0.009. T2-net misclassified 2 cases for each fold 
(6 total out of 214 subjects). Three subjects were misclassi-
fied as IDH mutated, and 3 as IDH wild-type.

Multicontrast TS-Net

The multicontrast TS-net achieved a mean cross-validation 
testing accuracy of 97.12% across the 3 folds (97.22%, 
97.10%, and 97.05%, SD  =  0.09). Mean cross-validation 
sensitivity, specificity, PPV, NPV, and AUC for TS-net 
were 0.98 ± 0.02, 0.97 ± 0.001, 0.97 ± 0.002, 0.97 ± 0.001, 
and 0.99  ±  0.01, respectively. The mean cross-validation 
Dice score for tumor segmentation was 0.89  ±  0.006. 
TS-net also misclassified 2 cases for each fold (6 total out 
of 214 subjects). Three subjects were misclassified as IDH 

mutated, and 3 as IDH wild-type. The misclassified subjects 
were not the same as those misclassified by T2-net. 
Classification accuracies and Dice scores for T2-net and 
TS-net are presented in Table 1.

ROC Analysis

The ROC curves for each cross-validation fold for T2-net 
and TS-net are provided in Fig. 3. T2-net and TS-net demon-
strated near identical performance curves with extremely 
high sensitivities and specificities.

Voxelwise Classification

Since these networks are voxelwise classifiers, they per-
form a simultaneous tumor segmentation. Figures 4A and 
B show examples of the voxelwise classification for an IDH 
wild-type and IDH mutated case using T2-net. The DVF pro-
cedure was effective in removing false positives to increase 
accuracy. The DVF procedure removed approximately 16% 
and 17% of the classified voxels for T2-net and TS-net, re-
spectively. This procedure improved the Dice scores by ap-
proximately 3% for each network. We also computed the 
voxelwise accuracy for each network. The performance on 
the IDH wild-type subjects was very similar between the 2 
networks, while for IDH mutated the voxelwise accuracies 
were better for TS-net. For T2-net, the mean voxelwise ac-
curacies were 84.9% ±0.05 for IDH wild-type and 76.4% 
±0.03 for IDH mutated. For TS-net, the mean voxelwise ac-
curacies were 85.7% ±0.04 and 84.7% ±0.01 for IDH wild-
type and IDH mutated, respectively.

Training and Segmentation Times

Each network took approximately 2 weeks to train. The 
trained networks took approximately 3 minutes to seg-
ment the whole tumor, implement DVF and predict the IDH 
mutation status for each subject.

Discussion

We developed 2 deep-learning MRI networks for IDH clas-
sification of gliomas based on imaging features alone. 
Both our T2-net and the multicontrast network outper-
formed IDH classification algorithms previously reported 
in the literature.15,17,34,35 When comparing the T2-net with 
the multicontrast network, our results suggest that similar 
performance can be achieved by using T2w images only. 
The ability to use only T2w images makes clinical transla-
tion much more straightforward and less prone to failures 
from image acquisition artifacts. The preprocessing used 
to prepare the data is also minimal. The time required for 
T2-net to segment the whole tumor, implement DVF, and 
predict the IDH mutation status for one subject is approxi-
mately 3 minutes on a K80 or P40 NVIDA-GPU.

There are several factors that may explain the higher 
performance achieved by our networks compared with 
previously published results. First and foremost is the 
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use of 3D networks, compared with previously reported 
2D networks. Additionally, the 3D network architecture is 
advantageous as the dense connections carry informa-
tion from all the previous layers to the following layers.29 
These types of networks are easier to train and can reduce 
overfitting.36 The DVF postprocessing step also helps in ef-
fectively eliminating false positives while increasing the 
segmentation accuracy by excluding extraneous voxels 
that are not connected to the tumor. DVF improved the 
Dice scores by approximately 3% for each network. The 3D 
networks interpolate between slices to maintain interslice 
information more accurately. The networks use minimal 
preprocessing without any requirement for extraction of 
pre-engineered features from the images or histopatholog-
ical data.34

The 3D networks used here are voxelwise classifiers, 
providing a classification for each voxel in the image. This 
provides a simultaneous single-label tumor segmenta-
tion (eg, the sum of voxels classified as IDH mutated and 
non-mutated provide the tumor label). The cross-validation 

single label whole tumor segmentation performance for 
these networks provided excellent Dice scores of 0.85 and 
0.89 for T2-net and the multicontrast TS-net, respectively. 
These tumor segmentation Dice scores are similar to the 
top performers from BraTS2017 tumor segmentation 
challenge.36

Both T2-net and TS-net achieved similar overall sub-
ject classification accuracies. This suggests that the in-
formation from the T2w images alone can provide a high 
classification confidence. For IDH wild-type tumors, both 
networks incorrectly classified 2 subjects per fold. These 
6 subjects were not the same between the networks. In 
reviewing these cases, there were no discriminating im-
aging features. The majority of these cases had heteroge-
neous enhancement, with mixed T2 and FLAIR signal, and 
surrounding edema. Although T2-net and TS-net demon-
strated similar performance on subject-wise IDH classifi-
cation, the voxelwise performance was different between 
the networks. TS-net demonstrated similar accuracies 
in predicting IDH wild-type voxels (85.7% vs 84.9%), and 

  
Table 1  T2-net and TS-net cross-validation results

Fold Description T2-net TS-net

Fold Number % Accuracy Dice score % Accuracy Dice Score

Fold 1 97.18 0.843 97.22 0.88

Fold 2 97.14 0.86 97.10 0.883

Fold 3 97.10 0.857 97.05 0.892

Average 97.14 ± 0.04 0.853 ± 0.009 97.12 ± 0.09 0.885 ± 0.006
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Fig. 3  (A) ROC analysis for T2-net. (B) ROC analysis for TS-net. Separate curves are plotted for each cross-validation fold along with corre-
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Fig. 4  (A) Example voxelwise segmentation for an IDH mutated tumor. Native T2 image (a). Ground truth segmentation (b). Network output 
without DVF (c) and after DVF (d). Yellow arrows in (C) indicate false positives. Red voxels correspond to IDH mutated class and green voxels cor-
respond to IDH wild-type. (B) Example voxelwise segmentation for an IDH wild-type tumor. The sharp borders visible between IDH mutated and 
wild-type result from the patchwise classification approach.
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slightly higher accuracies in predicting IDH mutated voxels 
(84.7% vs 76.4%).

Since these networks are voxelwise classifiers, there are 
portions within each tumor that are classified as IDH mu-
tated and other areas as IDH wild-type. Heterogeneous 
genetic expression can occur in gliomas over time and 
result in varied tumor biology.17,37 In the clinical setting, 
immunohistochemistry (IHC) evaluations are primarily 
used. IHC uses monoclonal antibodies to detect the most 
frequent IDH mutations (eg, IDH1-R132H). Different cutoff 
values have been proposed to determine the IDH status of 
a tissue sample using IHC methods. While some advocate 
staining of more than 10% of tumor cells to confer IDH pos-
itivity, others suggest that one “strongly” staining tumor 
cell is sufficient.38 Heterogeneity of staining with IHC has 
been reported where up to 46% of subjects showed partial 
uptake.39 In 2011, Perusser et  al reported that IDH1-R132H 
expression may occur in only a fraction of tumor cells.40 
Heterogeneity of the sample can also affect the sensitivity of 
genetic testing.41 IDH heterogeneity and reported false neg-
ativity in some gliomas have been explained by monoallelic 
gene expression, wherein only one allele of a gene is ex-
pressed even though both alleles are present. According 
to Horbinski, sequencing may not always be adequate to 
identify tumors that are functionally IDH1/2 mutated.40,42 
Although heterogeneity of IDH status has been reported 
in histochemical and genomic evaluations of gliomas, we 
do not make the claim that the deep-learning networks are 
detecting heterogeneous IDH mutation status in these tu-
mors. Rather, the morphologic expression of IDH mutation 
status is likely heterogeneous and reflected in the mixed 
classification outputs of IDH mutated and IDH wild-type 
within a particular tumor. Regardless, the accuracies using 
this voxelwise approach well outperform other methods.

Although IHC methods are routinely used in the clinic, sev-
eral exome sequencing studies have demonstrated that up 
to 15% of IDH-mutated gliomas remain undetected by tradi-
tional IDH1 antibody testing.23,24 There are several molecular 
methods that can be used to determine IDH mutation status 
from tissue. The current gold standard is the whole genome 
Sanger DNA sequencing method. This method, however, is 
limited by the amount of time, cost, and volume of tissue 
required to perform the genetic analysis. Next-generation 
sequencing methods such as whole exome sequencing are 
able to determine mutation status much more rapidly, at de-
creased cost, and with reduced tissue volumes. However, 
these methods have false negative rates up to 6% and error 
rates ~9 times that of whole genome sequencing.43 To further 
understand the cases that had been misclassified by T2-net, 
we reviewed the data from these cases in TCGA. There were 3 
cases from the cross-fold validation sets that were misclassi-
fied by T2-net as IDH mutated. Two of these 3 (TCGA-CS6669, 
TCGA-020069) demonstrated small tissue volumes obtained 
during biopsy, limiting molecular characterization. This 
raises the possibility that the ground truth determination of 
wild-type for these tumors may have been subject to tissue 
sampling bias (eg, lack of an appropriate tissue sample, loca-
tion of sampling).

Another factor that may explain the higher performance 
achieved by our networks is that previous approaches re-
quired multicontrast input, which can be compromised 
due to patient motion from lengthier examination times 

and the need for gadolinium contrast. High-quality T2w 
images are almost universally acquired during clinical 
brain tumor diagnostic evaluation. Clinically, T2w images 
are typically acquired within 2 minutes at the beginning of 
the exam and are relatively resistant to the effects of pa-
tient motion. On modern MRI scanners, high-quality T2w 
images can even be obtained in the presence of patient 
motion.20 As such, the ability to use only T2w images is a 
significant advantage when considering clinical translata-
bility. This method was inspired by a similar approach used 
for the identification of the status of O6-methylguanine-
DNA methyltransferase methylation and prediction of 
1p/19q chromosomal arm deletion.44 Furthermore, our 
preprocessing steps preserve native image information 
without the need for any region-of-interest or tumor pre-
segmentation procedures. Previous deep-learning algo-
rithms for MRI-based IDH classification used explicit tumor 
pre-segmentation steps. These were accomplished either 
by manual delineation of the tumor or by adding a sepa-
rate deep-learning tumor segmentation network. The use 
of these pre-segmentation steps adds unnecessary com-
plexity to the classification process, and in the case of 
manual pre-segmentation, makes them unworkable as a 
robust automated clinical workflow. Our network uniquely 
performs a simultaneous tumor segmentation as a natural 
consequence of the voxelwise segmentation process.

Limitations

Deep-learning studies typically require a very large amount 
of data to achieve good performance. The number of 
subjects available from the dataset of TCIA is relatively small 
compared with the sample sizes typically required for deep 
learning. Despite this caveat, the data are representative of 
real-world clinical experience, with multiparametric MR im-
ages from multiple institutions, and represent one of the lar-
gest publicly available brain tumor databases. Additionally, 
the acquisition parameters and imaging vendor platforms 
are diverse across the imaging centers contributing data to 
TCIA. Although our results show promise for expeditious 
clinical translation, our algorithm performance will need to 
be replicated in an independent dataset.

Conclusion

We developed 2 deep-learning MRI networks for IDH classi-
fication of gliomas: (i) a T2 network and (ii) a multicontrast 
network with high accuracy. Both networks outperformed 
the state-of-the-art algorithms. We also demonstrate sim-
ilar performance when comparing the T2 network with the 
multicontrast network. The high accuracy of our network, 
which utilizes only T2w images, will facilitate imminent 
clinical translation for this approach.

Supplementary Material

Supplementary data are available at Neuro-Oncology 
online.
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