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Abstract 
This study demonstrates that a variant of a Siamese neural network architecture is more effective at classifying high-
dimensional radiomic features (extracted from T2 MRI images) than traditional models, such as a Support Vector Machine 
or Discriminant Analysis. Ninety-nine female patients, between the ages of 20 and 48, were imaged with T2 MRI. Using 
biopsy pathology, the patients were separated into two groups: those with breast cancer (N=55) and those with GLM 
(N=44). Lesions were segmented by a trained radiologist and the ROIs were used for radiomic feature extraction. The 
radiomic features include 536 published features from Aerts et al., along with 20 features recurrent quantification analysis 
features. A Student T-Test was used to select features found to be statistically significant between the two patient groups. 
These features were then used to train a Siamese neural network. The label given to test features was the label of whichever 
class the test features with the highest percentile similarity within the training group. Within the two highest-dimensional 
feature sets, the Siamese network produced an AUC of 0.853 and 0.894, respectively. This is compared to best non-Siamese 
model, Discriminant Analysis, which produced an AUC of 0.823 and 0.836 for the two respective feature sets. However, 
when it came to the lower-dimensional recurrent features and the top-20 most significant features from Aerts et al., the 
Siamese network performed on-par or worse than the competing models. The proposed Siamese neural network 
architecture can outperform competing other models in high-dimensional, low-sample size spaces with regards to tabular 
data.  
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1. Introduction 
In the past, neural networks have shown extremely high representational power when it comes to modeling complex and 
non-linear data, such as images or audio signals. As an example, Convolutional Neural Networks (CNN) hold the state-of-
the-art performance in a vast number of problems within medical image analysis1. However, while fully-connected neural 
networks should be also useful for the high-dimensional tabular features often found in radiomics, they are largely absent 
from the literature; likely due to the large amounts of data that neural networks often demand to work effectively. Indeed, 
neural network models seem to largely be reserved for medical research problems where the dataset is in the several 
thousands2, 3, which is quite rare to find in highly specific medical image analysis problems, such as granulomatous lobular 
mastitis (GLM) versus breast cancer  
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While models such as Random Forests (RF) and Support Vector Machines (SVM) are adept at dealing with low-sample, 
high-dimensional spaces, we believe that a variant of neural network holds promise in working in working in similar spaces 
with far more efficacy: Siamese neural networks. Due to Siamese networks not modeling the underlying distribution of all 
features in relation to the classes, but rather creating distance-based representations of classes, this neural architecture 
allows for problems with many classes and low amount of data per class to be solved very effectively4.  This characteristic 
of the architecture has been exploited in many papers, such as state-of-the-art performance on the Omniglot dataset5, 
matching duplicate questions on Quora6, and, recently, for person re-identification in videos7. The specifics of the Siamese 
network architecture will be discussed in the methods section.  

Recurrence quantification analysis (RQA) has previously been used to study the homogeneity and revisiting of phase-
space within time-series data. While attempts have been made to generalize RQA to spatial-domain data, such as medical 
images, the computation time of such technique are usually intractable for images larger than 50 x 50, as two-dimensional 
RQA has an 𝑂𝑂(𝑁𝑁5) time complexity in the worst case. We introduce the mathematical underpinnings of this generalized 
technique in the methods section to define the reasoning behind recurrence plots, but this technique alone was insufficient. 
As such, there have been no previous studies on applying RQA-based feature extraction for image classification. In this 
work, by considering T2 MRI images as simply a collection of time-series summed over a given dimension, we apply non-
generalized RQA to such images. Furthermore, by using an approximation technique for traditional RQA, we reduce the 
computation time from 𝑂𝑂(𝑁𝑁2) to 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑁𝑁)), allowing us to retain the original size of the input T2 MRI image without 
any resizing. This will allow us to study how radiomic features could be used to accurately distinguish granulomatous 
lobular mastitis from breast cancer in young women without using contrast enhancement or time series data.  

The purpose of this study is to showcase the effectiveness of Siamese neural networks in tabular, high-dimensional, 
radiomic features. Furthermore, we establish that, using the radiomics features used by  Aerts et al.8 and additional recurrent 
features described in this work as input, Siamese networks outperform two conventional non-neural-network models 
(Support Vector Machines and Discriminant Analysis) on Area-Under-Curve (AUC), Accuracy, Sensitivity, and 
Specificity metrics for the highest dimensional feature sets.  

 

2. Methods 
 

2.1 Patient Cohort 
Retrospectively, 99 women between the ages of 20 and 48 who were imaged using a 1.5T or 3T MRI to collect T2 images 
were selected for the study. These women were separated into two groups based on pathological diagnosis via biopsy. The 
first group contained women with breast cancer (N = 55) while the second group was diagnosed with granulomatous 
lobular mastitis (N=44). Lesions were segmented by an experienced radiologist to create masks used localize the region 
of interest (ROI) (Figure 1).  

2.2 Aerts et al. Features 
We use 536 radiomic features presented by Aerts et al. 2014, who used the features to determine tumor phenotype in 
patients with lung or head and neck cancer. These features consist of 8 shape and size-based features, 273 gray-level co-
occurrence matrix (GLCM) features (25 calculations across 13 directions), 143 gray-level run length (GLRL) features (11 
calculations across 13 directions), and 112 wavelet statistical features (11 calculations with 8 different filter sets).  
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Figure 1. Example images of granulomatous lobular mastitis and breast cancer. The GLM segmentation by the 
radiologist is shown in red, while the cancer segmentation is shown in green. Using visual inspection alone, it is difficult 
to distinguish between GLM and breast cancer.   

 

2.3 Recurrent Features 
Furthermore, we use 20 additional radiomic features based on recurrent features. These features consist of 5 approximate 
Recurrence Quantification Analysis (RQA) features each created from 4 versions of a T2 MRI image. The 5 RQA features 
are Recurrence Rate (RR), Determinism (DET), Average Diagonal Length (ADL), Ratio (R), and Longest Line (LL), all 
of which were given using an approximation technique given by Schultz et al.9. For the calculation of these features, the 
input will be the ROI of a breast MRI, which is a matrix of 𝑆𝑆 slices and of spatial dimensions H and W, or 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆×𝐻𝐻×𝑊𝑊. 
The regions of an MRI image, along with the rationale for using them, and the mathematical formulation below, with 
examples shown in Figure 2.  

I. Summed alongside the slice dimension, allowing the approximation technique to search for recurrences within 
the horizontal dimension along the vertical dimension of the image: 𝑀𝑀𝑀𝑀𝑀𝑀𝐻𝐻×𝑊𝑊 = ∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖×𝐻𝐻×𝑊𝑊𝑆𝑆

𝑖𝑖=1 . 

II. Summed alongside the slice dimension and then transposed, allowing the technique to search for recurrences 
within the vertical dimension along the horizontal dimension of the image: 𝑀𝑀𝑀𝑀𝑀𝑀𝑊𝑊×𝐻𝐻 = (∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖×𝐻𝐻×𝑊𝑊𝑆𝑆

𝑖𝑖=1 )𝑇𝑇 .  

 

III. Summed alongside the height dimension, allowing the technique to search for recurrences within the channel 
dimension alongside the width dimension. 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆×𝑊𝑊 = ∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆×𝑖𝑖×𝑊𝑊𝐻𝐻

𝑖𝑖=1 .  
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IV. Summed alongside the width dimension, allowing the technique to search for recurrences within the channel 
dimension alongside the height dimension. 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆×𝐻𝐻 = ∑ 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆×𝐻𝐻×𝑖𝑖 .𝑊𝑊

𝑖𝑖=1   

 

 

Figure 2: Examples of summed regions of interests (Rows 1 and 3) and their associated recurrence plots (Rows 2 and 4).  
Rows 1 & 2 represent breast cancer, while 3 & 4 represent GLM.  
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2.4 Siamese Neural Network  
Siamese networks are a neural architecture which began to see wide-spread use in the 1990’s for signature verification10, 
which attempts to learn a distance-based representation of input features for the end goal of learning feature similarity, 
rather than feature classification. As mentioned earlier, Siamese networks are essentially a form of metric learning, similar 
to distance-based algorithms like K-Nearest Neighbors.  

These networks typically consist of twin networks which share weight/parameter updates and accept inputs 𝑋𝑋𝑎𝑎 and 𝑋𝑋𝑏𝑏, 
and produce an encoded representation of that input at the networks 𝑘𝑘𝑡𝑡ℎ layer, or 𝑋𝑋𝑎𝑎

(𝑘𝑘) and 𝑋𝑋𝑏𝑏
(𝑘𝑘). These inputs are creating 

by making all possible, non-repeating pairs from the training set. Thus, the total number of paired training points of a 
dataset of size 𝑀𝑀 is given by 𝑀𝑀(𝑀𝑀+1)

2
. 

The produced vectors of these twin network are then used to compute some distance metric vector, typically L2-distance, 
which is used as the output of the network and can be understand as the learned distance between the two inputs. There 
are a variety of loss functions to use with Siamese network outputs, but they all primarily revolve around 
maximizing/minimizing the distance between inputs that are dissimilar/similar. For example, the contrastive loss function11 
gives a non-zero loss when the distance 𝐷𝐷 between the output and the ground truth 𝑦𝑦 (which is either 1 or 0) are dissimilar 
by a number larger than a given margin:  

𝑦𝑦𝑑𝑑2 + (1 − 𝑦𝑦) ∗ max (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑑𝑑, 0) 

An example of this prototypical Siamese network can be seen in Figure 3.  

 

Figure 3. A typical Siamese network with two branches.  

 

However, our experiments showed that a distance-based loss performed quite poorly. These results were similar to Homma 
et al.6, who found that ‘forcing’ a particular distance metric upon the network, such as L2 or L1 distance, often resulted in 
mediocre results. Instead, we follow similar a similar methodology by removing the distance function entirely, and, instead, 
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use the outputs of the Siamese network to create a vector composed of the outputs 𝑋𝑋𝑎𝑎
(𝑘𝑘) and 𝑋𝑋𝑏𝑏

(𝑘𝑘)themselves and the squared 
difference between them, all concatenated alongside the row dimension. This created vector is then fed into another neural 
network, which has two ReLU layers, and a final, sigmoid-activation layer to classify the inputs as a 1 (similar) or 0 
(dissimilar). The network is then updated using binary cross-entropy. This essentially allows the Siamese network to create 
its own distance measure within its learned vector space. 

It should be noted that while Homma et al. also included the Hadamard product of these two output vectors in this 
concatenated vector, we found that this addition decreased the overall accuracy of the network, so it was removed. An 
example of this modified Siamese network can be seen in Figure 4. It should be noted that modified Siamese network is 
no longer symmetric with the inputs. In practice, this ends up being a non-issue, as our method of pairwise input generation 
will not create any reciprocals of previous pairs. As in, if we have a pair of vectors [𝐴𝐴,𝐵𝐵] as an input sample, we will never 
have a pair of [𝐵𝐵,𝐴𝐴] in our dataset. 

 
Figure 4. Siamese network weighting and parameter updates during training.  

Finally, due to Siamese networks not assigning a singular class to any given input, any classification problem must use a 
comparison group which contains all classes within the problem to evaluate the accuracy of the network. For larger 
datasets, using K-Means to create representative centroids for each class would be a possible approach for this comparison 
group. Our method of creating a comparison group will be discussed in the validation section.  

Finally, the architecture details are composed of the following: 5 layers in the Siamese branch, consisting of 512, 256, 128, 
64, and 32 nodes, respectively. The sigmoid classification layer takes the concatenation of the Siamese branch (which is a 
vector of length 96) and passes it to layers consisting of 64, 32, 16, 8, and 1 nodes, respectively. All layers have ReLU 
activations placed after them, with the final layer having a sigmoid activation. Furthermore, all layers have L2 
regularization applied to the weights. The model was trained using an ADAM optimizer with the learning rate set to 0.0002 
over 300 epochs, and the most accurate model (given the validation loss) was used to evaluate the model.  

2.5 Lesion Classification and Validation 
As our results will be directly compared to our previously published work, we will use their methods to compare the 
Siamese architecture for certain feature groups to their used models (Support Vector Machine, or SVM, and Discriminant 
Analysis, or DA). There are four feature groups used to evaluate this model. Using an alpha value of 0.05, we select the 
significant features using the training group from 1) Aerts et al. features, 2) RQA features, 3) the combination of the former 
two, and 4) the top-20 most significant features from the Aerts et al. features. This final group was used as a direct 
comparison to match the total number of RQA features.  
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As noted earlier, Siamese networks require a comparison group to use for validating for classification problems. Due to 
relatively small size of our dataset/number of classes, we use the approach given by Koch et al.5, where the comparison 
group is the entirety of the training set. As in, we create pairs between all points in the training set and all points in the 
testing set. From here, given the network-given similarity between each point in the training set and any given testing 
point, we simply select the class that has the highest normalized similarity as the predicted class.  

 

3 Results 
The Siamese network was implemented in TensorFlow12 and deployed on an Nvidia Titan XP GPU. Across all the patients, 
with an alpha value of 0.05, 264 of the 536 Aerts et al. features (49%) were found to be statistically significant between 
the two groups when using a Student T-Test. For the RQA features across, across all patients, 18 of the 20 features (90%) 
RQA features were significant. Furthermore, we also used a cross-validation setup; each classifier was trained on 11 folds 
of data, where the features used were determined based on significance determined in the training data, with each fold 
containing 5 cancer patients and 4 mastitis patients for evaluation. This was repeated 25 times to create average AUC, 
accuracy, specificity, and sensitivity values. The patients used for training in each fold were identical for each model tested. 
The results from the network are shown in Table I.  

 

Table I: Results from using the various features and models to distinguish mastitis from cancer in breast cancer patients. 

Model Features Accuracy Sensitivity Specificity AUC 
Siamese Aerts 0.783 0.823 0.752 0.853 
Siamese Aerts Top 20 0.719 0.659 0.765 0.719 
Siamese RQA 0.723 0.679 0.756 0.760 
Siamese Aerts & RQA 0.847 0.849 0.845 0.894 

      
DA Aerts 0.748 0.796 0.694 0.823 
DA Aerts Top 20 0.717 0.756 0.673 0.768 
DA RQA 0.748 0.778 0.717 0.836 
DA Aerts & RQA 0.737 0.784 0.694 0.836 

      
SVM Aerts 0.727 0.764 0.689 0.777 
SVM Aerts Top 20 0.659 0.699 0.612 0.768 
SVM RQA 0.717 0.737 0.691 0.836 
SVM Aerts & RQA 0.727 0.750 0.707 0.814 

 

The highest AUC value was obtained when the features from Aerts et al. were combined with RQA features, with a value 
of 0.894. In comparison, the highest AUC value acquired when using DA and SVM was 0.836. For SVM, this was obtained 
using only the recurrent features, while DA performed equally well using the recurrent features alone as well as the 
combination of recurrent features and those from Aerts et al..  
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4 Discussion 
While deep learning has been previously used for medical images, it is almost always with raw images combined with 
convolutional neural networks, as discussed extensively in Lundervold et al.1 When it comes to tabular radiomics data, the 
vast majority of studies use alternative models, such as support vector machines, random forests, and logistic regression13-

15. This is likely due to traditional neural networks requiring a large amount of data to work effectively, which is something 
that is often lacking in many niche medical problems.  

In this work, we applied a variant of a Siamese neural network to the problem of mastitis/cancer classification of tabular 
radiomics data. Despite having over 250 features in our Aerts and Aerts & RQA feature groups, which is 2.5x more features 
than samples (99), the network performed more effectively than the best two competing non-neural-network models 
(Discriminant Analysis and Support Vector Machines). Within this comparison, the Siamese network scored higher in 
accuracy, sensitivity, specificity, and area-under-curve metrics for the classification task. 

This is the first study that uses a Siamese network for radiomic feature classification and compares it against non-neural 
network models. Our main contribution is demonstrating the usefulness of deep metric learning in tabular radiomics data 
and to show state-of-the-art results in the classification of GLM and malignant breast cancer.  

Future improvements to this work are numerous. For one, it would be beneficial to incorporate more elaborate techniques 
to improve the efficiency of the Siamese network, such as smart negative mining16, triplet losses17, and others. While most 
of these techniques were created for computer-vision purposes, they would be just as likely to work for tabular data. 
Secondly, it is possible that the usage of Siamese networks could be extended to the convolutional case, allowing for raw-
image classification with a small number of samples. Thirdly, and finally, it is interesting that fact that Siamese networks 
were far less accurate with the smaller feature groups than the DA and SVM models, which both had an AUC of 0.836 on 
the 18 significant RQA features, while the Siamese network only had an AUC of 0.760. A future study could focus on why 
metric learning seems to counter-intuitively suffer in a lower-dimensional space compared to higher dimensional spaces. 

Finally, the primary limitation of this study is that the network used was not benchmarked on multiple high-dimensional 
radiomics datasets, especially in different imaging modalities, such as features from CT scans. In future studies, it would 
be worth exploring the impact that differing feature groups have on a Siamese networks data efficiency.  

 

5 Conclusion 
In this study, the usefulness of Siamese neural networks for high-dimensional, low sample problems was investigated 
using a GLM versus breast cancer classification task with tabular data from radiomic features. It was found that this variant 
of neural network performs exceedingly well compared to two leading non-neural-network models in classifying the given 
radiomics features. The highest patient-level accuracy of 84.7% was achieved was the Siamese network was combined 
with the collection of textural features and RQA features. As a major limitation in this study was the small number of 
patients (N = 99), future work will expand the number of patients to test the generalizability of the method described.  
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