
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Multiparametric radiomics for
predicting the aggressiveness of
papillary thyroid carcinoma using
hyperspectral images

Edwards, Ka'Toria, Halicek, Martin, Little, James, Chen,
Amy, Fei, Baowei

Ka'Toria Edwards, Martin Halicek, James V. Little, Amy Y. Chen, Baowei Fei,
"Multiparametric radiomics for predicting the aggressiveness of papillary
thyroid carcinoma using hyperspectral images," Proc. SPIE 11597, Medical
Imaging 2021: Computer-Aided Diagnosis, 1159728 (15 February 2021); doi:
10.1117/12.2582147

Event: SPIE Medical Imaging, 2021, Online Only

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 22 Oct 2021  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

Multiparametric Radiomics for Predicting the Aggressiveness of 

Papillary Thyroid Carcinoma Using Hyperspectral Images 

Ka’Toria Edwards 1, Martin Halicek 1, James V. Little 2, Amy Y. Chen 3, Baowei Fei 1,4.* 

1 Department of Bioengineering, University of Texas at Dallas, Richardson, TX 
2 Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 

3 Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA 
4 Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX 

*E-mail: bfei@utdallas.edu, website: https://fei-lab.org 

ABSTRACT 

Papillary thyroid carcinoma (PTC) is primarily treated by surgical resection. During surgery, surgeons often need 

intraoperative frozen analysis and pathologic consultation in order to detect PTC. In some cases pathologists cannot 

determine if the tumor is aggressive until the operation has been completed. In this work, we have taken tumor 

classification a step further by determining the tumor aggressiveness of fresh surgical specimens. We employed 

hyperspectral imaging (HSI) in combination with multiparametric radiomic features to complete this task. The study 

cohort includes 72 ex-vivo tissue specimens from 44 patients with pathology-confirmed PTC. A total of 67 features 

were extracted from this data. Using machine learning classification methods, we were able to achieve an AUC of 

0.85. Our study shows that hyperspectral imaging and multiparametric radiomic features could aid in the pathological 

detection of tumor aggressiveness using fresh surgical spemens obtained during surgery.  
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1. PURPOSE 

Over the past 20 years, the rate of new thyroid cancer cases has increased 200% within the United States [1]. Papillary 

thyroid carcinoma (PTC) accounts for approximately 80% of these cases [2,3]. PTC is not only the most common 

form of thyroid cancer but also among the most malignant. Of individuals diagnosed with PTC, approximately one in 

four will not surpass the five-year survival mark [4]. This is due to PTC invading adjacent structures such as the 

lymphatic system [5]. Individuals who undergo tumor resection have recurrent disease up to 15% of the time [6], and 

35% of individuals who suffer from recurrent disease die from the cancer [7]. Metastasis is a key characteristic of 

aggressive PTC, which makes early detection and classification critical. Tumor aggressiveness is routinely determined 

by intraoperative pathological evaluation of papillary thyroid tissue specimens via fine-needle biopsy in conjunction 

with pre-operative notes [8]. Up to 30% of fine-needle biopsies have inconclusive results, which leads to inefficient 

treatment of aggressive PTC tumors [6]. Inefficient treatment is partly due to the incomplete resection of tumors [6]. 

Partial resection is caused by the tumor expanding past what the physician determines to be the tumor boundary. 

Among other factors, this boundary issue must be mitigated during routine tumor resections to prevent the invasion 

of PTC in nearby structures. 

In previous works, machine learning techniques, such as convolutional neural networks, have been implemented to 

detect head and neck cancer using hyperspectral imaging (HSI) [9-14]. Currently, there is limited research 

demonstrating PTC tumor aggression classification. A previous study was able to classify PTC on magnetic resonance 

images (MRI) with an AUC of 0.56, utilizing categorical features (gender, tumor size, presence of multiple lesions, 

etc.), as outlined in the pathological report. By adding radiomic features, they were able to obtain an AUC 0.92 [15]. 

One research group utilized similar techniques to determine tumor risk in head and neck cancer. This group was able 

to identify high-risk, or aggressive, tumors with an AUC of 0.86 [16]. A literature review indicates that this is the first 

work to present a novel tool for PTC tumor aggressiveness classification by implementing multiparametric radiomics 
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based machine-learning classification method. To the best of our knowledge, this is the first work to investigate tumor 

aggressiveness classification of PTC utilizing radiomics on hyperspectral images. 

2. METHODS 

2.1 Hyperspectral Imaging 

A CRI Maestro HS System (Perkin Elmer Inc., Waltham Massachusetts) was used to acquire HSI data of the ex-vivo 

specimens. The HS System obtains images by performing spectral scanning from 450 to 900 nm using a Xenon light 

source in combination with a liquid crystal tunable filter (LCTF) with a 5 nm spectral resolution [8,17-21]. The image 

size of the HSI was 1040×1392×91 pixels (height × width × spectral bands) with a 25 µm per pixel spatial resolution. 

The scanning duration was approximately one minute per HSI. 

2.2 Papillary Thyroid Carcinoma Tissue Database 

For this study, 72 specimens were acquired from 44 patients undergoing routine resection of papillary thyroid tumors. 

We acquired the tissue after pathological analysis from the primary tumor as well as tissue located at the tumor margin, 

which contained both tumor and normal tissue. Tissues were categorized as tumor or tumor and normal, by a 

histopathological analysis performed by an experienced pathologist. Upon the exclusion of benign tumors, 39 tumor 

and 33 tumor and normal specimens were selected for this investigation. Specimens were stored on histological slides 

approximately 10×6×2 mm (height × width × depth) in size. In addition to the histological slides, pathology reports 

were made available after the redaction of personally identifiable information.  

PTC tumor aggressiveness was determined according to the American Thyroid Association (ATA) 2015 Risk 

Stratification System for differentiating thyroid carcinomas [15, 22]. Aggressive tumors are those which can be 

identified as intermediate-risk or high-risk. PTC Tumors are assigned to the intermediate-risk or high-risk categories 

by having one or more of the following histopathological features: aggressive histology subtype (e.g., tall cell, hobnail, 

columnar cell), vascular invasion, tumor capsular invasion, extra-thyroidal extension (ETE), regional metastases, or 

distant metastases. Non-aggressive, or low-risk, tumors were classified as not containing any aggressive features. Of 

the 44 patients, 35 were classified as aggressive, and nine were classified as non-aggressive. This corresponds to 58 

aggressive and 14 non-aggressive tissue specimens. In total, there are four groups of tissues being analyzed in this 

study. Specimen are classified as aggressive tumor-normal interface tissue, non-aggressive tumor-nomal interface 

tissue, aggressive tumor tissue, and non-aggressive tumor tissue. 

          

Figure 1. Representative images of tumor-normal interface of a resected tissue specimen. (A) Aggressive tissue 

specimen exhibiting ETE. (B) Non-aggressive tissue specimen. The tumor-normal classification is indicated where 

red is tumor tissue and green is normal tissue. 

2.3 Radiomic Feature Extraction and Selection 

Images were loaded into the PyRadiomics package where 120 features were extracted. Several of these features 

revealed constant values between specimen. As a result, we chose the 67 features that displayed uniqueness for this 
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classification task [23]. These features included first order (15), shape-based (14), gray-devel dependence matrix (11), 

gray-level co-occurrence matrix (3), gray-level run length matrix (12), and gray-level size zone matrix (12). Features 

were pre-defined by the Imaging Biomarker Standardization Initiative (IBSI) [24].  

After feature extraction, radiomic feature selection was performed to minimize problems associated with high 

dimensionality, allow the machine learning algorithms to train faster, and to improve the reproducibility of the results 

[25]. A total of six feature selection methods were implemented: analysis of variance (ANOVA), forward elimination, 

backward elimination, Pearson correlation, ridge regression, and least absolute shrinkage and selection operator 

(LASSO). These feature selection methods can be split into three groups: filter, wrapper, and embedded methods. 

Pearson correlation and ANOVA are filter methods which select features based on their correlation to tumor 

aggression, determined by statistical tests. The wrapper methods include forward and backward elimination. In 

wrapper methods, features are chosen by generating a subset that iteratively changes based on thresholding. This 

generates a dataset that consists of a combination of variables with the highest predictive power. The embedded 

methods implemented in this study include LASSO and ridge regression. These methods work by using unique 

calculations that combine both wrapper and filter qualities. 

 

Figure 2. Pipeline of radiomics analysis of papillary thyroid carcinoma on HSI. 

2.4 Machine Learning  

Eighteen machine learning algorithms were tested for each feature extraction method. The machine learning 

algorithms were implemented using the python scikit-learn package [24]. The 108 combinations of feature extraction 

and machine learning methods are shown in the heatmap in Figure 3. Classifiers were trained using an independent 

training set (N = 54 specimens). The predictive performance was evaluated based on an independent testing set (N = 

18 specimens) using accuracy analysis. The independent testing set was randomly selected on a patient basis. To aid 

in reproducibility of these results, there was no patient overlap between the training and testing groups. Each method 

was optimized by adjusting the parameters as shown in Table 1 to obtain maximum accuracy.  
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Figure 3. Heatmap displaying embedded accuracy values for the testing group. The feature selection methods 

(column) and classification tools (row) with a maximum accuracy of 0.83 are shown. Acronyms are outline in the 

abbreviations section. 

3. RESULTS 

PTC aggression was classified with an accuracy of 0.83 for patients in the testing group (Figure 3) along with an AUC 

of 0.85. The number of features outlined in Column three of Table 1 illustrates that the feature selection methods 

presented here produced similar results despite using different numbers of features. Fom this, we cannot determine 

the optimal feature selection method. Results were obtained through optimization of various parameters, as shown in 

the fourth column of Table 1. The number of true-positive, true-negative, false-positive, and false-negative predictions 

are also shown, where positive is aggressive, and negative is non-aggressive. Quadratic Discriminant Analysis (QDA) 

proved to be the most accurate machine learning classification tool in two of the top three classification algorithms. 

Table 1. The corresponding true-positive (TP), true-negative (TN), false-positive (FP), and false-negative (FN) 

values for feature selection and machine learning method combinations that resulted in 83.3% accuracy for the 

testing group. 

Feature 

Selection 

Machine 

Learning 

Classification 

# of 

Features 

Optimized Feature 

Selection Parameter 
TP TN FP FN 

Forward 

Elimination 
QDA 9 

Threshold in = 0.3 

Threshold out = 0.35 
13 2 3 0 

Backward 

Elimination 
L_SVC 39 Threshold out = 0.35 12 3 2 1 

LASSO QDA 3 

alpha = 0.1 

threshold = |value| > 

1E-3 

13 2 3 0 

 

Of the features selected, gray-level dependence matrix (GLDM) variance was unanimously chosen as an important 

feature to classify tumor aggression. This feature measures the variance, or amount of variability, found in an image. 

GLDM variance is calculated for the HSI by finding the GLDM as defined as a the number of connected voxels within 

a distance of one voxel, that are dependent on the center voxel for each HSI. Next, the variance for every voxel in the 

HSI is calculated. The summation of these variances result in one value that represents the variability within the HSI 
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[23]. The GLDM variance average ± standard deviation for non-aggressive tumor-nomal interface tissue was 33.5 ± 

9.53, aggressive tumor-normal interface tissue was 26.7 ± 9.97, non-aggressive tumor tissue was 30.8 ± 14.8, and 

aggressive tumor tissue was 22.5 ± 10.3. After performing a one-way ANOVA test, we found that there was a 

significant difference between each of these groups with a p-value < 0.03. The results of the follow up ad-hoc Student’s 

unpaired, two-tailed t-test assuming equal variances are show in Figure 3. There is a significant difference with a p-

value < 0.01 between the GLDM variance of non-aggressive tumor-normal interface tissue and aggressive tumor 

tissue, and a significant difference between GLDM variance of non-aggressive tumor tissue and aggressive tumor 

tissue was found with p-value < 0.05.  

 

Figure 4. Gray-level dependence matrix (GLDM) variance of tissue specimen classification based on tissue type. The 

significance between groups are denoted by asterisks, where ** p <0.01, * p < 0.05.  

4. DISCUSSION & CONCLUSION 

Tumor aggression was independently classified with an accuracy of 0.83 and AUC of 0.85. Although various 

classification  methods produced similar results, they utilized different numbers of features. This implies that the 

significance of the feature is more important than the number of features used. Again, the most significant feature 

across the three different methods was GLDM variance, a measure of image variability. As expected, the variability 

of an image is greater when the tumor-normal interface is present, rather than a tumor alone. This is demonstrated by 

the difference of the means displayed in Figure 4.   

A limitation of this study, as with similar classification problems, is the limited data set. In the event that a larger data 

set was available, the models presented here would have likely performed better. In addition, the number of aggressive 

tissue specimen out-numbered the non-aggressive tissue specimen by a large margin. This data imbalance limited the 

success of the results presented here. Most of the models predicted that all specimen were aggressive, which results 

in the accuracy of 72% observed frequently in Figure 3. The rate of false-negative cases, or patients that were identified 

as non-aggressive when it was aggressive, was zero for forward elimination and LASSO, and one for backward 

elimination (FN column of Table 1). This demonstrates the conservative nature of the models presented here. It is 

better to check a tumor that is falsely classified as aggressive, rather than fail to treat a tumor that is falsely classified 

as non-aggressive. The sooner aggressive tumors are treated, the more likely the physician will be able to fully resect 

the tumor.  
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In the TP, TN, FP, FN columns of Table 1, where positive is aggressive and negative is non-aggressive, a closer look 

at the data reveals that the models correctly identify non-aggressive data on tumor-normal interface tiussue, but 

struggle when a non-aggressive image of tumor tissue was presented. This is not likely due to the data imbalance, 

since the non-aggressive images of tumor-normal interface tissue were able to achieve a high accuracy. From this, we 

can conclude that the GLDM variance operates better at the tumor-normal margin. This finding is applicable to the 

boundary issue of tissue resection cases, where physicians may not completely remove the tumor. The method 

presented here offers a tool that can identify the textural features that are unique to the tumor-normal boundary of 

aggressive or non-aggressive tumors. A p-value < 0.01 supports the significant difference of boundary texture 

observed between aggressive and non-aggressive  of tumor-normal interface tissue. Using this information, we can 

prove that we have identified a numerical characteristic to describe ETE. ETE occurs when the tumor extends outside 

of the thyroid capsule and invades surrounding structures [22]. This phenomenon can be observed at the tumor-normal 

interface tissue and can therefore be characterized by the variance presented in this region. This is beneficial for patient 

treatment since most PTC related deaths occur from post-resection disease recurrence. As a result, the physician can 

be notified that the resection may not have encompassed the tumor boundary and tailor the PTC tumor treatment plan 

accordingly. 

In conclusion, radiomics has proven capable of differentiating aggressive and non-aggressive PTC tumors with an 

AUC of 0.85 for patients in the testing group independent of pathological data. Together, the hyperspectral imaging 

methods presented along with preliminary results of this work demonstrate the potential for such methods to be 

implemented as a tool to increase the efficiency and accuracy of pathologists performing PTC tumor classification on 

histological slides for treatment planning.  
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ABBREVIATIONS  

Acronym Method 

SVC Support-Vector Classifier 

Log Logarithmic 

RF Random Forest 

KNN K- Nearest Neighbor 

GaussNB Gaussian Naïve Bayes 

DT Decision Trees 

XT Extra Trees 

ABC AdaBoost Classifier 

GB Gradient Boosting 

SGDC Stochastic Gradient Descent 

GPC Gaussian Process Classification 

BNB Bernoulli Naïve Bayes 

L_SVC Linear Support-Vector Classifier 

LDA Linear Discriminant Analysis 

QDA Quadratic Discriminant Analysis 

XBG eXtreme Gradient Boosting 

SVM Support-Vector Machine 

ANOVA Analysis of Variance 

Forward Forward Elimination 

Backward Backward Elimination 

LASSO Least Absolute Shrinkage and Selection Operator 

Pearson Pearson Correlation 

Ridge Reg Ridge Regression 
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