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Abstract

Purpose: Magnetic resonance imaging has been recently used to examine the abnormalities of
the placenta during pregnancy. Segmentation of the placenta and uterine cavity allows quanti-
tative measures and further analyses of the organs. The objective of this study is to develop a
segmentation method with minimal user interaction.

Approach: We developed a fully convolutional neural network (CNN) for simultaneous seg-
mentation of the uterine cavity and placenta in three dimensions (3D) while a minimal operator
interaction was incorporated for training and testing of the network. The user interaction guided
the network to localize the placenta more accurately. In the experiments, we trained two CNNs,
one using 70 normal training cases and the other using 129 training cases including normal cases
as well as cases with suspected placenta accreta spectrum (PAS). We evaluated the performance
of the segmentation algorithms on two test sets: one with 20 normal cases and the other with
50 images from both normal women and women with suspected PAS.

Results: For the normal test data, the average Dice similarity coefficient (DSC) was 92% and
82% for the uterine cavity and placenta, respectively. For the combination of normal and
abnormal cases, the DSC was 88% and 83% for the uterine cavity and placenta, respectively.
The 3D segmentation algorithm estimated the volume of the normal and abnormal uterine cavity
and placenta with average volume estimation errors of 4% and 9%, respectively.

Conclusions: The deep learning-based segmentation method provides a useful tool for volume
estimation and analysis of the placenta and uterus cavity in human placental imaging.
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1 Introduction

The placenta is a critical and complex organ that provides oxygen and nutrition to the growing
fetus and removes waste from its blood. Fetal health strongly depends on the functionality of the
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placenta and therefore any abnormality of the placenta could be harmful to the fetus and
mother.* Placenta previa, placenta accreta spectrum (PAS), and uteroplacental insufficiency
are the most frequent indications for imaging studies during pregnancy.*® Assessment of the
placenta in vivo across gestation is critical to understand placental structure, function, and devel-
opment and to identify strategies to optimize pregnancy outcome.’

Two-dimensional (2D) ultrasound imaging is the clinical standard imaging modality used for
accessing placental health and diagnosis of the abnormalities. In placenta imaging, the location,
shape, and volume of the placenta are important factors used in detecting abnormalities.®*"'° In
addition, the interface of the placenta at its uterine implantation is an important component of
placental assessments. In 2D ultrasound imaging, physicians create three-dimensional (3D)
models in their mind and subjectively determine volume, location, and features of the placenta,
which is a challenging task. The placenta size is usually estimated based on the longest diameter
of its shape detected by the physicians in 2D views.!! 3D imaging with magnetic resonance
imaging (MRI) could address some of these issues. Studies in the literature have shown that
3D segmentation of placenta in magnetic resonance (MR) images could be used as a part of
a clinical procedure for monitoring conditions that result in pregnancy and birth complications
such as PAS, fetal growth restriction, and suspicion of intrauterine fetal demise.'>”!> However,
manual segmentation of the placenta in MRI is time-consuming with high inter- and intra-
observer variability.'®

Although there have been efforts to develop computerized algorithms to segment the placenta
in MRI'"!® either the accuracy of the presented methods was relatively low (Dice coefficient'”
was about 72%'®) or the computational time was high (1 to 2 min/volume in average) and
required multiple image volumes (sagittal and axial acquisitions).!” The size of the dataset
(16 images) was another limitation of a previous study.'” There are a few algorithms for uterine
segmentation in MRI?*?! in nonpregnant women. Namias et al.”’ used a local binary pattern-
based texture feature extraction to segment the uterus. They tested their algorithm on nine
patients and reported a Dice coefficient of 81%. Kurata et al.>! used a deep learning algorithm
for uterine segmentation in MRI using U-Net architecture. They tested their method on 122 MR
images acquired from 72 patients with benign or malignant tumors and 50 healthy cases. They
reported Dice coefficients of 84% and 78% for patients and healthy cases, respectively. They also
reported the average mean absolute distance between their results and manual segmentation. The
average mean absolute distance was reported in pixel unit. Since the voxel size was not con-
sistent across their image dataset, using a physical unit (e.g., millimeter) could give a better
understanding about the surface misalignment.

Deep learning-based approaches demonstrated a strong capability for fast segmentation of
medical images with high accuracy. At the 2020 SPIE Medical Imaging Conference, we pre-
sented an interactive deep learning-based segmentation algorithm for segmenting the uterine
cavity and placenta in MRI of normal patients.”> We used minimal operator input to improve
the segmentation performance. This study is a comprehensive extension of our preliminary work
to achieve fast, accurate, and repeatable segmentation of both uterus and placenta in both normal
women and women with suspicion of PAS. Figure 1(a) shows a general block diagram of our
segmentation method. We adopted the U-Net architecture to present a 3D end-to-end fully
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Fig. 1 (a) Schematic block diagram of the segmentation method. (b) Simulating user manual inter-
action. The yellow solid contour shows the placenta, the green, hashed area is the 5% placenta’s
central area, and the purple cross is the randomly selected point within that area.
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convolutional neural network (CNN) for 3D image segmentation. We doubled the data size and
tested the trained CNN model on the data that included images from subjects with both normal
and abnormal placentas.

2 Methods

2.1 Data

In this study, we used two datasets of T2-weighted MR images of pregnant women throughout
gestation (20 to 38 weeks). One dataset contained 100 3D uterus MRIs from 100 normal pregnant
women. Each image volume had 28 to 52 2D transverse slices. For 99 cases, each slice was origi-
nally 256 X 256 pixels in size. For one case, the slice size was 212 X 256 pixels. We resized that
image to 256 X 256 by zero-padding to make the slice size consistent across the dataset. The axial
image slice spacing for all the images was 7.0 mm and the in-plane pixels were isotropic for all the
slices with resolutions ranging from 1.0547 x 1.0547 mm? to 1.7188 x 1.7188 mm?. The second
dataset contained 99 3D uterus MRIs from 99 pregnant women. Each image volume had 40 to 62
2D transverse slices all 256 X 256 pixels in size. The axial image slice spacing for all the images
was 7.0 mm and the pixels were isotropic for all the slices with resolutions ranging from 1.1719 X
1.1719 mm? to 1.7578 x 1.7578 mm?. The subjects of this dataset were suspected of having PAS
or other placenta abnormalities and 67 of them had postpartum hysterectomy operations.

Images of both datasets were acquired by 1.5 Tesla clinical MRI scanners (MAGNETOM
Avanto and MAGNETOM Aera, Siemens, Erlangen, Germany) at the same medical center.
A body array coil covered the entire pelvis for signal reception during imaging. For each image,
the uterine cavity and placenta were manually segmented by an expert radiologist.

This study was approved by the research ethics board of our institution and written informed
consent was obtained from all patients prior to enrolment.

2.2 User Interaction

Our previous observations suggested incorporating user interaction for higher segmentation
accuracy, especially for the placenta segmentation, when a limited number of training images
are available. Therefore, for each image, the operator selected the superior and the inferior axial
slices of the uterine cavity. This information was used for image block extraction explained in the
preprocessing subsection. In addition, the superior and the inferior axial slices of the placenta
were selected for each patient, and the center of the placenta tissue was estimated on both slices.
Then, three axial image slices, evenly spaced between the two selected slices for the placenta,
were automatically selected and the operator was asked to define the approximate center of the
placenta tissue on each of the three slices. Therefore, the operator needed to browse through the
image slices and click seven times in total; twice for the uterus bounding slices and five times for
the placenta bounding slices and the center points. In this study, we simulated the operator inter-
action by selecting a point defined for each slice randomly from the 5% central area of the axial
cross-section of the placenta tissue on the slice [Fig. 1(b)]. Therefore, there are five points
selected on placenta tissue. We use linear interpolation between the five selected points to define
one point per placenta slice. To provide this information as an input, we made a binary image
volume with the same size as the MR image and assigned ones to the voxels that are selected as
center points and zeros to all the other voxels. We applied the 3D Euclidean distance transform to
this binary image volume to make gradients toward the selected points. We used the result dis-
tance mask as the second input channel of the CNN.

2.3 Preprocessing

We applied a median filter to all the 2D image slices under a 3 X 3 window to reduce the noise
while preserving the edges. Then, we normalized the voxel intensity distribution of each image
by clipping the intensities on the 5th and 99.9th percentile followed by rescaling the intensities
between zero and one, as shown in Eq. (1). This normalization of the intensity distribution helps
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to reduce the effect of background voxels and makes the intensity distribution more consistent
across the image dataset:

0, 1;(x,y,2) < ps(1;)
Lxy.z) = {1, I:(x,y,2) > pogo(l;), (D
Liey2)=pst)  otherwise

Po9o(Ii)=ps(li)°

where I;(x,y,z) represents the intensity of the i’th image in the image dataset at coordinate
(x,y,2), and ps5(I;) and pogo(I;) are the 5th and 99.9th percentiles of the pixel intensities in
the image, respectively. 1;(x, y, z) is the normalized image.

To reduce the intersubject variability in placenta intensity, we linearly scaled the intensities of
the voxels to shift the average intensity (i;) of the selected center points and all the voxels around
them with in-plane distances of less than three pixels to a constant intensity value (i) across the
image set [see Eq. (2)]. Here, the constant value is the average placenta intensity of the first
image in the set:

4 A 1
Ii(x,y,2) = Ii(x,y,2) X )

i

where ] :(x,y,z) is the i’th image after intensity scaling. In this study, i = 0.154.

There is a full-overlap between the placenta and uterine cavity. To make the segmentation
labels independent from each other with no overlap (one-hot encoding), we used the portion of
the uterus that was not covered by the placenta as the uterine cavity channel. Then, we made a
three-channel label that included background, uterine cavity (with no overlap with placenta), and
placenta labels.

We used a block-based segmentation approach by extracting a set of 3D five-slice blocks from
the images. Each block (B¥) contained five sequential 2D axial slices, with the uterus present in at
least one of the slices. For each image, the adjacent blocks were defined with four-slice overlaps
(Fig. 2). We applied the same process for extracting blocks from the second input channel.

2.4 Experiments

Experiment I: We randomly divided the images of the first dataset into 70 training, 10 validation,
and 20 test images. We used data augmentation to double the number of the data using
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Fig. 2 Image blocks extraction of the 3D MR image.
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left-to-right flipping of the images, yielding 140 training, 20 validation, and 40 test images. We
used the data to train and test a CNN model (model I) for simultaneous segmentation of the
uterus and placenta.

Experiment II: In this experiment we used all 199 images from both datasets to train and test
the CNN (model II). We randomly chose 25 images from each dataset for testing (50 images in
total) and used the remaining 149 images for training (129 images) and validation (20 images).
This experiment tested the impact of adding images from abnormal placenta on the segmentation
performance of the CNN model. Since in this experiment the number of training images was
greater than experiment I, to avoid high computation load during training, we did not use any
data augmentation for training and validation. We reported the average results for the whole test
group and also for 35 nonhysterectomy cases and 15 hysterectomy cases separately.

2.5 Fully Convolutional Neural Network Architecture

In this study, we used a customized version of U-Net,” which is a fully convolutional neural
network (FCNN). We modified the architecture to make it 3D and used that for multilabel image
segmentation. Figure 3 shows the architecture of the proposed network. The network is a four-
level U-Net model with 21 layers including 18 convolutional and three max pool layers. We kept
the size of the output channels for all the convolutional layers the same as the input channels by
zero-padding the input channel before convolution. For the two upper levels of the network, we
used a convolution kernel size of 5%x5x3, and for the two lower levels we used a kernel size of
3x3x3. We applied a dropout rate to the neurons of 10 layers shown in Fig. 3. The input has two
channels: the 3D image blocks of the MRI and the points’ distance mask. The output has three
channels, one channel for uterine cavity, one for placenta, and one for background (i.e., anything
not the uterus or placenta).

Due to an imbalance between the number of background and foreground (placenta and
uterus) voxels, we used a loss function based on Dice similarity coefficient'® (DSC):

23020 2P iy) -Gyl

LR SIS SIS ST T AN S SIS S5 DA

3)

where p(I,, ) is the probability value of the output probability map corresponds to the input
image (1, ) at (x,y,z) and G, , . is the value of the reference binary mask at (x, y, z). To avoid
bias toward placenta or uterine cavity segmentation, we calculated two loss values, L e for
the uterine cavity and Lyj,cenia TOr placenta. We used the average of the losses as the total loss.
The loss was calculated at the block-level during training. For optimization during training,
we used the Adadelta® gradient-based optimizer.
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Fig. 3 The FCNN architecture (four-level 3D U-Net). The number of feature maps for each layer is
mentioned at the top of the layer.
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2.6 Implementation Details

We used the TensorFlow” machine learning system to implement the 3D U-Net model on
a Python platform on a high-performance computer with 512 GB of memory and NVIDIA
TITAN Xp GPU. We used a batch size of five (limited by the size of GPU memory) and an
initial learning rate of 1.0, with a dropout rate of 40% (see Fig. 3), and the decay rate and epsilon
conditioning parameters for Adadelta optimizer of 0.9 and 1 x 107!, respectively. The initial
learning rate value was chosen based on a systematic search for an optimized learning rate
around the default initial learning rate of Adadelta optimizer (i.e., 0.001). We trained the net-
works for up to 1000 epochs and chose the best trained model based on the highest validation
accuracy.

2.7 Postprocessing and Evaluation

After testing the network on the 3D image blocks of an MR volume, we integrated the results by
averaging the probabilities over the overlapped slices results to a probability map for the whole
3D image. We applied a similar process to the flipped version of the image to improve the seg-
mentation result, using the average of the output probabilities corresponding to the original
image and the flipped image as the final probability map. Thresholding was applied to build
output binary masks out of the probability maps, which were then compared against manual
segmentation labels. Our segmentation error metrics included the DSC, 95% Hausdorff distance
(HD), and signed volume difference (AV):

AV = Vseg = Viets “4)

where V., is the volume of the object on the output segmentation label and V¢ is the volume of
the object on the manual segmentation label. HD represents the largest distance between two
surfaces within the 95% of the closest surface points. We reported DSC in percent, HD in mm,
and AV in cm® and percent. Two-sample z-tests (two-tailed) were used to test the difference in
mean DSC, HD, and AV between the first and second experiments. In each case, we tested the
null hypothesis that the means of the metric resulting from the first experiment (experiment I) are
equal to the means of the metric for the second experiment (experiment II). Significance level
was set at 0.01.

3 Results

3.1 Training and Testing Results

We trained the first network (model I) until we reached the highest validation accuracy at epoch
530. The image block-level training and validation DSCs were 93.2% and 86.7%, respectively.

We segmented the test images using the trained CNN model. Table 1 shows the test results
using the 20 test images of the first dataset. The metric values in the table are all at the full 3D
image-level. The volume of the uterine cavity in the first test data ranged from 818 to 3993 cm?
(mean + standard deviation [SD] = 2445 4915 cm?), whereas the placenta volume ranged
from 161 to 1149 cm® (mean + SD = 629 + 268 cm?®) based on the provided manual segmen-
tation labels. We also trained and tested the CNN on all the images from both datasets (model II).
Table 2 shows the average test results across all 50 test cases as well as the hysterectomy and

Table 1 Test results of experiment | (average + SD).

Uterine cavity Placenta

Data N DSC (%) AV (cm3) AV (%) HD(mm) DSC (%) AV (cm®) AV (%) HD (mm)

Normal 20 92.0+43 6+254 2+12 269+141 81.9+6.1 -53+100 -9+16 16.1+7.4
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Table 2 Test results of experiment Il for the whole test set as well as hysterectomy (Hyst.) and
nonhysterectomy (Non-hyst.) cases separately (average + SD). The values in bold show signifi-
cant differences in comparison with test results in Table 1 (p < 0.01).

Uterine cavity Placenta

Data group N DSC (%) AV (cm3) AV (%) HD (mm) DSC (%) AV (cm®) AV (%) HD (mm)

Total 50 87.5+5.7 —247+589 —-4+14 26.0+9.0 825+58 -12+151 0+15 252+22.6
Non-hyst. 35 88.6+49 -108+597 0+14 258+9.1 832+21 10+113 3+13 23.6+22.8

Hyst. 15 84.9+6.7 -571+434 -14+11 26.54+88 81.0£72 -62+210 —7+17 289+224

nonhysterectomy subsets, separately. The volume of the uterine cavity in the experiment II test
set ranged from 818 to 7857 ¢cm® (mean 4= SD = 3165 & 1392 cm?), whereas the placenta vol-
ume ranged from 160.6 to 2239 cm® (mean + SD = 929 + 425 cm?) based on the provided
manual segmentation labels. In Table 2, the values in bold show where statistically significant
differences were observed between the corresponding values in Tables 1 and 2 (P < 0.01). The
total computational time for full 3D segmentation of one patient was about 25 s on average.

Figure 4 shows the qualitative results in 3D for four sample cases from experiment I. Figure 5
shows the segmentation results for the same four cases on 2D axial slices. Figures 6 and 7 show
the qualitative results in 3D and 2D, respectively, for four sample cases from experiment II.

Reference Algorithm Uterus cavity Placenta

Fig. 4 Qualitative results of the uterus and placenta segmentation of four sample images from the
first test set shown in 3D. Each row shows the results for one patient. For the first two columns, the
blue, semitransparent shapes show the uterine cavity and the solid, red shapes show the placenta.
For the last two columns, the green, solid shapes show the manual segmentations and the semi-
transparent, purple shapes show the algorithm segmentation results.
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Fig. 5 Qualitative results of the uterus and placenta segmentation in 2D for the four subjects are
shown in Fig. 4. Each row shows the results for one patient on five sample axial slices from (left)
inferior to (right) superior. The semitransparent green (bright) and red (dark) regions show the
algorithm segmentation results for the uterine cavity and placenta, respectively. The solid green
(bright) and red (dark) contours show the manual segmentation provided by the expert observer
for the uterine cavity and placenta, respectively.

During validation and test, we observed some small isolated regions in the segmentation labels of
the uterine cavity and placenta (see the first, third, and fourth rows of Fig. 4) that looked like false
positive components. As a postprocessing step, we automatically removed them by keeping only
the largest 3D segmentation component. Adding the postprocessing step improved the average
DSC values about 0.1% for both uterine cavity and placenta in experiment I. The postprocessing
did not improve the uterine cavity segmentation in experiment II and improved the placenta
segmentation by about 0.2% in terms of DSC.

4 Discussion

The proposed deep learning approach for multiclass 3D segmentation segments the uterine cav-
ity and placenta in MR image volumes simultaneously with high segmentation accuracy. The
high intersubject variability in placenta and uterus size, shape, and appearance is one of the main
challenges in achieving an accurate segmentation result using machine learning approaches. This
issue could be addressed using a large training dataset that represents the population diversity.
However, due to the lack of sufficient data, we incorporate observer interaction for initializing
the CNN to improve the results and make the algorithm more reliable for clinical assessments.
We included the user interaction as the second channel of the CNN input. Table 1 shows that for
normal subjects, we could achieve test DSC of 92% and 82% for uterine cavity and placenta,
respectively, with the absolute volume difference (|AV|) of <10% (AV was 2% for uterine cavity
and —9% for placenta). It is important to note that for uterine cavity even the signed volume
difference is close to zero, but the standard deviation of 14% shows that the volume estimation
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Reference Algorithm Uterus cavity Placenta

Fig. 6 Qualitative results of the uterus and placenta segmentation in 3D using model Il. Each row
shows the results for one patient. The two top rows show the results of two subjects from the
nonhysterectomy group and the two bottom rows show the results from the hysterectomy group.
For the first two columns, the blue, semitransparent shapes show the uterine cavity and the solid,
red shapes show the placenta. For the last two columns, the green, semitransparent shapes show
the manual segmentations and the solid, purple shapes show the algorithm segmentation results.

accuracy is not consistent across the test data. Therefore, there might be cases with either over- or
underestimation of volume. Using other metrics such as DSC and HD compensates the limitation
of signed volume difference in evaluating the performance of the algorithm. Using model II
trained and tested on both normal and PAS cases did not have a statistically significant impact
on the placenta segmentation performance in terms of the DSC metric. However, it significantly
reduced the accuracy of the algorithm in uterine cavity segmentation, as determined by the #-tests
(see Table 2). This could be due to the greater diversity in size and appearance of the uterus after
the second dataset with images of abnormal placentas was added. The accuracy of the algorithm
in both experiments was substantially higher than the reported results in the literature. The quali-
tative results in Figs. 4-7 show that the method could segment both the uterine cavity and
placenta with acceptable quality. The algorithm detected the shape and position of the uterus
and placenta correctly. Therefore, the algorithm could also help detect those abnormalities that
are diagnosed based on the relative position of the placenta within the uterine cavity. In some of
the results shown in Fig. 4 (e.g., the uterine cavity in the last two rows), there are some small,
incorrectly segmented objects seen close to the region of interest that slightly increased the
false-positive rate and decreased the measured segmentation accuracy. An extra postprocessing
step such as morphological filtering could remove them and slightly increase the accuracy.
Comparing the qualitative results to those of previously published work on placenta
segmentation' '8 shows that our approach outperformed them.

It is important to note that 50% of the images in the second dataset were acquired from
women with suspicion of PAS, some of which were severe enough to result in cesarean
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Fig. 7 Qualitative results of the uterus and placenta segmentation in 2D for the four subjects are
shown in Fig. 6. Each row shows the results for one patient on five sample axial slices from (left)
inferior to (right) superior. The semitransparent green (bright) and red (dark) regions show the
algorithm segmentation results for the uterine cavity and placenta, respectively. The solid green
(bright) and red (dark) contours show the manual segmentation provided by the expert observer
for the uterine cavity and placenta, respectively.

hysterectomy, spanning the spectrum of disease. Because these were performed later in preg-
nancy, on average, 32 weeks, the average sizes of the uterus and placenta were about 1.5 to 1.8
times larger than those of the first dataset. The images of both datasets were acquired in the same
medical center with similar MR scanners and imaging parameters and protocols. Therefore, the
observed difference between the results of the first and the second data could be interpreted as the
existence of some image-based features that could be considered by a deep learning algorithm
for classifying the images to normal and abnormal classes. A comparison between the second
and third rows of Table 2 also shows a substantial difference (2% to 4% in terms of DSC and 10%
to 14% in terms of AV) in placenta and uterine cavity segmentation between hysterectomy and
nonhysterectomy groups. In future work, we are going to use a deep learning technique for
placenta abnormality prediction and detection.

We used a 3D block-based segmentation approach for better adaptability of the method for
image volumes with different numbers of slices. The block-based approach also improved the
segmentation accuracy by averaging the output probabilities for the overlapped regions of the
blocks.

The average computation time per patient was about 25 s, which is substantially lower than
manual segmentation time. However, it is required to measure user interaction time to confirm
using this segmentation method could decrease the segmentation time substantially.

4.1 Limitations

The small size of the training set is a limitation. Since there is high intersubject variability in
placenta shape and position, the training set must be large enough to represent all the shape and
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location variations of the placenta within the uterine cavity. Moreover, the gestational age of the
pregnancy affects the fetus’s size, appearance, and orientation. This could directly impact the
segmentation performance of the algorithm. The large number of training iterations also reflects
that issue. Using separate CNN models for each pregnancy trimester could be helpful for more
accurate segmentation performance. The long imaging time and the unpredictable and inevitable
movements of the baby introduces some imaging artifacts that could have a negative impact on
the performance of the segmentation algorithms, especially the 3D segmentation algorithms. An
interslice image registration prior to the segmentation could be helpful to mitigate this impact.
The other limitation of this work is the block-based segmentation approach. Although it helped
with algorithm implementation, it increased the segmentation time and added more computa-
tions for integrating the block-level results. The block-based segmentation could improve the
segmentation by averaging the probabilities across the blocks overlapped regions. As a future
work, we need to employ other CNN architectures that showed better performance in the seg-
mentation of medical images compared to U-Net (e.g., Unet++,%° nnU-Net,?” Unet 3+,2 etc.).
We also need to design a user study to test the hypothesis in a more realistic situation, as the
current results were achieved based on a simulation of the user interaction.

5 Conclusions

We developed a deep learning approach for simultaneous 3D segmentation of the uterine cavity
and placenta in MRI. We guided the network training and testing by incorporating minimal user
input for more robust and reliable segmentation performance. We trained and tested the algo-
rithm using two datasets: one dataset with images from normal subjects and the other from a
combination of women suspected of PAS, some of whom eventually underwent hysterectomy.
The results showed accurate segmentation performance of the algorithm with average DSC
values of 92% and 83% for uterine cavity and placenta, respectively. The segmentation method
was able to accurately measure placenta size and assess its location, which is an initial step in
the application of textural radiomic analysis of the segmented image to aid in the diagnosis of
placenta abnormalities.
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