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Abstract—While remarkable advances have been made in
Computed Tomography (CT), most of the existing efforts focus
on imaging enhancement while reducing radiation dose. How to
normalize CT images acquired using non-standard protocols is
vital for decision-making in cross-center large-scale radiomics
studies but remains the boundary to explore. We develop a novel
GAN-based image standardization algorithm called Radiomic-
GAN to mitigate the discrepancy caused by using non-standard
acquisition protocols. In RadiomicGAN, a pre-trained U-Net has
been adopted as part of the generator to learn radiomic feature
distributions efficiently, and a novel training approach, called
Window Training, has been developed to smoothly transform
the pre-trained model to the medical imaging domain. In the
experiments, we compared RadiomicGAN with four state-of-
the-art CT image standardization approaches on both patient
and phantom CT images acquired using three different recon-
struction kernels. We objectively evaluated model performance
based on more than 1,000 radiomic features. The results show
that RadiomicGAN clearly outperforms the compared models.
The source code, manual, and sample data are available at
https://github.com/selim-iitdu/radiomicGAN.

Index Terms—Computed Tomography, Generative Adversarial
Network, Image Synthesis, Standardization, Radiomics.

I. INTRODUCTION

As one of the most popular diagnostic image modalities rou-
tinely used for assessing anatomical tissue characteristics for
disease management (1), computed tomography (CT) provides
the flexibility of customizing acquisition and image recon-
struction protocols to meet an individual’s clinical needs (2).
However, capturing CT images with non-standardized pro-
tocols could result in inconsistent radiomic features in both
intra-CT (by changing CT acquisition parameters) and inter-
CT (by comparing different scanners with the same acquisition
parameters) tests. The low reproducibility regarding radiomic
features, such as intensity, shape, and texture, for CT imaging,
may forms a barrier to analyzing CT images in a large scale,
a.k.a. radiomics (3; 4).
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The radiomic feature discrepancy problem can be addressed
by either normalizing the radiomic features of all the non-
standard images or standardizing CT images and then extract-
ing the radiomic features from the standardized images. The
former solution, however, is difficult, since the distributions
of the radiomic features are not well defined (5). For the
latter one, image synthesis algorithms have been recently
developed aiming to synthesize images with similar feature-
based distributions compared to that of the target images while
preserving anatomic details (6). Mathematically, let  be a CT
image acquired using a non-standard reconstruction kernel,
y be its corresponding standard image, the model aims to
compose a synthetic image 3’ from z, such that 3’ follows
the feature distributions of y rather than z.

Most of the recent progresses on CT image standardization
and normalization are based on deep learning models (6; 7;
8). All these models need to be trained from scratch using a
relatively large data which are difficult to obtain. To relax the
demand of large data, transfer learning may be adopted. One
of the computational challenges is to adopt models pre-trained
on natural image domain due to different dynamic ranges. In
particular, the pixel intensity of a natural image ranges from
0 to 255 (8-bit), while for the state-of-the-art CT scanners,
standard 12-bit depth images are commonly utilized, resulting
in a much wider Hounsfield Unit (HU) range that scales from
-1,024 to 3,071 (9).

In this paper, we present RadiomicGAN, a novel GAN-
based deep learning model, for CT image standardization and
normalization focused on harmonizing CT images acquired
with non-standard reconstruction kernels as it is one of the
most critical factors causing feature inconsistency (10). Ra-
diomicGAN employs a hybrid architecture for image texture
feature extraction and embedding. Its encoder consists of
multiple consecutive neural blocks including both pre-trained
and trainable convolutional layers. To address the dynamic
pixel range-related problem in transfer learning, Radiomic-
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GAN uses a new training strategy named Dynamic Window-
based Training (DWT), which allows us to train a model using
pixels within a selected range called “window”. The range
of a window can be automatically broaden or shrank based
on the pixels where the model suffers most in the previous
training iteration, allowing us to fine-tune the trainable layers
in RadiomicGAN using the frequently appeared pixels in the
window.

In summary, given its hybrid network structure, Radiomic-
GAN can effectively learn the radiomic feature distributions
from the standard CT images and then harmonize non-standard
CT images. A dynamic window-based training approach is
developed to effectively address the pixel range difference
problem and thus enable transfer learning in the medical image
domain. Overall, RadiomicGAN has the following advantages:

1) RadiomicGAN effectively learns the radiomic feature
distributions of standard CT images from limited number
of patients using a novel transfer learning structure.
RadiomicGAN adopts a novel window training method
to gradually map RGB to HU range for CT images.

A systematic evaluation metric for CT image stan-
dardization, which extensively measures 1,401 radiomic
features, has been developed in RadiomicGAN.
Experimental results show RadiomicGAN is clearly bet-
ter than the state-of-the-art CT image standardization
methods.

2)

3)

4)

II. METHOD

RadiomicGAN is a novel GAN-based model optimized for
CT image standardization and normalization. Let = be a non-
standard CT image and y be its corresponding standard CT
image. Given z, the generator of RadiomicGAN G aims to
synthesize a new image y’ that has the same data distribution
as y rather than x. Meanwhile, the discriminator of Radiomic-
GAN D determines whether y and 3’ are from the same
distribution. Leveraging a pre-trained VGG-19, the generator
of RadiomicGAN can effectively learn the feature distribution
of the standard CT images. In addition, a new window training
strategy enables the application of the VGG-19 pre-trained
with natural images on medical image analysis tasks.

A. RadiomicGAN Architecture

The network architecture of RadiomicGAN shown in Fig-
ure 1 consists of a generator and a discriminator. The discrim-
inator of RadiomicGAN D is a typical fully convolutional
neural network adopted from the pix2pix network (11). The
generator (G is the U-Net-like structure, where each trainable
hidden layer in the encoder is connected to its corresponding
hidden layer in the decoder with a skip connection to preserve
the lost features during down-sampling (12).

Inspired by the application of pre-trained VGG for style
transfer (13; 14), we construct the encoder of RadiomicGAN
as a series of consecutive neural blocks. All the layers in
the same neural block have the same dimension. A neural
block includes multiple pre-trained VGG layers (Figure 1, light
blue), which is frozen during network training, and a trainable
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layer (Figure 1, dark blue) that works as filter to extract and
forward the fine-to-coarse texture features and forward them
to the corresponding decoding layers.

For example, the first block includes two 512-by-512 pre-
trained VGG layers and a 512-by-512 trainable layer, both
the first and the second frozen layer are constricted by using
convolution operation with stride=1 on the previous layer. The
trainable layers in a neural block, which is constructed from
the previous pre-trained VGG layer using convolution, batch-
normalization, and ReLU activation, is designed to propagate
the domain-specific information onto the corresponding de-
coding layers.

B. RadiomicGAN Training

Leveraging pre-trained networks, transfer learning has been
widely adopted in applications in the medical domain (15; 16).
The CT image standardization and normalization problem
can be addressed by fine tuning a pre-trained CNN with
limited medical data. In RadiomicGAN training, by passing
a non-standard CT image z through a neural block, which
consists of multiple pre-trained VGG layers and a trainable
convolutional layer, the domain-specific texture features of
x can be effectively extracted. In the following text, we
introduce the feature extraction and embedding, loss function,
and window training, which are the three key components in
RadiomicGAN model training.

1) Feature Extraction and Embedding.: In a CNN, the first
several convolutional layers are used to extract texture-related
features and the last a few layers are used to extract shape-
related features (13). Since RadiomicGAN is expected to stan-
dardize the texture features while keeping the shape features
unchanged, we adopt the first four groups of convolutional
layers of a pre-trained VGG-19 network aiming to effectively
extract fine-to-coarse features from the input CT images.

2) Window Training: Natural images usually use the 8-bit
encoding, so the pixel domain covers numbers ranging from 0
to 255. Medical images, since they follow the 16-bit encoding,
have a much wider dynamic range. The extended pixel range
poses a fundamental challenge for the use of transfer learning
in the medical image domain.

We introduce a new training strategy, called Window Train-
ing to gradually vary the effective pixel range and to continu-
ously train RadiomicGAN, making it possible to map RGB to
HU numbers in transfer learning. During the window training,
RadiomicGAN is exposed to an effective pixel range called
“window”. The lower bound and the upper bound of a window
can be specified using the fixed growing and dynamic selection
approaches consecutively.

Using window training, RadiomicGAN can be continuously
trained with the updated training data with specified effective
pixel ranges. Algorithm 1 describes the window training strat-
egy, which consists of the fixed growing approach followed
by the dynamic selection approach. The former is a bottom-up
training approach, where the window starts from a small range
and gradually extends to the whole HU range, allowing the
model to gradually learns the HU number distribution in the
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Fig. 2: Dynamic selection framework. Given a set of CT
images synthesized by the generator G, the non-trainable
discriminator D is used to generate the corresponding class
activation mappings (CAMs). A window range is defined
using all the hot-spots in the CAMs. RadiomicGAN is then
continuously trained using the updated training data.

training data. The latter is a top-down training approach, where
the training starts with the whole HU range; and the effective
pixel range reduces dynamically according to the performance
of RadiomicGAN so that RadiomicGAN is always focused on
the pixel distributions where it suffers most significantly in the
previous training iteration.

Also, the window training strategy can be considered as
a novel data augmentation function that generates training
data with diverse texture distributions while preserving spatial
details. Note that the traditional min-max normalization is a
special case of the window training where the window size is
fixed to be the full range.

Window Training Step 1. Fixed Growing: Algorithm 1
line 1-7 describes the fixed growing approach. In the fixed
growing approach, we gradually select all the pixels by
specifying pixel ranges with a fixed pace. The first window
includes the HU numbers within a narrow effective pixel range
(e.g. [—1024,—769]). Then, the window size is gradually
increased by 256 throughout the training process (e.g., from
[—1024, —769] to [—1024, —511]), allowing for more pixels
being considered in the training process. We repeat the process
until the whole HU range is covered (Algorithm 1 line 3-7).
Note the window size is increased only if the model accuracy
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Algorithm 1 Window Training

Input: model M, training data DS, HU min hu,,,,, HU
max Almggg, Step w, training accuracy threshold thgec,
training epoch threshold th,, heat-map threshold th s,
and window width threshold th;y,.

Qutput: Trained model My

Initialisation: My

. currentStart < humin

. currentEnd < hupmin + w

. while ht,,q. < currentEndPoint do

DS’ « clip(DS, currentStart, current End)
My + train(My, DS’ thace, thy)
currentEnd < currentEnd + w

end while

: winRange < DynamicSelection(DS, My, thyqi)

currentStart < MIN (winRange)

currentEnd < M AX (winRange)

: while |currentEnd — currentStart| > thy, do

DS’ « clip(DS, currentStart, current End)

My + train(My, DS’ thaee, 1)

winRange <— DynamicSelection(DS, Mg, thq)

currentStart < MIN (winRange)

currentEnd < M AX (winRange)

: end while

: return My =0

R A A ol S s

Y
AN S A

exceeds threshold th,.. or reaches maximum training epoch
thy, (Algorithm 1 line 5). Function clip(.) selects all pixels
whose intensity values are within the current window range
(Algorithm 1 line 4). Function train(.) continuously trains
model My using training data DS’ until the model accuracy
exceeds threshold th,.. or reaches maximum training epoch
th, (Algorithm 1 line 5).

Window Training Step 2. Dynamic Selection: Unlike the
fixed growing approach, the window range in the dynamic
selection approach is determined by using the Class Activation
Map (CAM), which identifies the subareas of the input images
contributed most for a specific classification task (17). The
direction of window expansion or shrinking in this approach
is not fixed as well. The motivation is be focused on the pixels
where the image synthesis failed, meaning that the discrimi-
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nator of RadiomicGAN is able to determine the images as a
non-standard images.

The dynamic selection approach is illustrated in Figure 2
and Algorithm 1 line 8-17. Let P be a randomly selected
subset of the training data DS and P’ be its corresponding
synthesized images. After each training epoch, we feed P’ to
the current discriminator D and calculate a set of CAMs C'
using Grad-CAM (18). During the calculation, D remains
freeze. For each image p; € P’, the layer before the soft-max
layer in D indicates the probability of being a standard and
non-standard image, which is used to calculate the CAM c¢;
of p;. CAM can be visualized as a heat-map where values
close to 1 are critical for determining the image being non-
standard. With a user given threshold ¢/ ¢4, we can determine
the subareas of p; contributed most for predicting p; to be a
non-standard image (th 4 € [0, 1]). For image p;, if a pixel’s
value in the CAM is greater than th ¢4, the corresponding CT
image pixel value is added to a pixel intensity list named W;.
All the pixels with their frequency equal to 1 are discarded
from W, considering them as image noise. This process is
repeated by randomly selecting subsets of images from the
training data. The window range is defined by merging all
the pixel intensity lists. The function DynamicSelection(.)
in Algorithm 1 line 8 calculate the window range based on
a training dataset D.S, trained model M, and the heat-map
threshold thy.. The window selection and training process
continues based on the Algorithm 1 line 11-17. Note the
window range is calculated in every epoch and the model get
trained on the current window range.

III. EXPERIMENTAL RESULTS
A. Dataset and Model Implementation

In total 14,372 CT image slices from five lung cancer
patient scans and ten phantom scans were obtained using
three different reconstruction kernels (B157, B164, and Br40)
and four different slice thicknesses (0.5, 1, 1.5, 3mm) using
the Siemens CT Somatom Force scanner at the University
of Kentucky Medical Center. We adopted Bl64 kernel and
Imm slice thickness as the standard CT imaging protocol,
since it has been widely used in clinical practice for lung
cancer diagnosis (7). Two testing datasets were prepared for
RadiomicGAN performance evaluation. The first testing data
were captured using the reconstruction kernel B157 and 1mm
slice thickness. The second testing data were captured using
the reconstruction kernel Br40 and 1mm slice thickness. Each
test dataset contains 387 image slices and have paired target
standard images (B164). The first testing data had relatively
similar radiomic features compared with the standard images,
while the second one are dramatically different to the standard
images. HU number range was set to between -1024 and 1000
in the standardization process, since most pixel values belong
to this range.

RadiomicGAN consists of a VGG-based U-Net with 26
hidden layers as the generator and a fully convolutional neural
network with six hidden layers as the discriminator. Both the
input and output dimension of RadiomicGAN were set to
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512 x 512 x 3. The convolutional layers used 4 x 4 filters.
LeakyRelu (19) was adopted as the activation function in all
the hidden layers. The discriminator of RadiomicGAN was
a fully convolutional neural network with six hidden layers
adopted from the pix2pix network (11). Batch-normalization
was used in each layer, LeakyRelu (19) was used as an
activation function, and soft-max was used in the last layer of
the discriminator. The RadiomicGAN model is train using the
adversarial loss introduced by Goodfellow et al (20). Random
weights were used during the network initialization phase.
Maximum training epochs were set to 30 with the learning rate
being 0.0001 with momentum 0.5. RadiomicGAN was imple-
mented in TensorFlow on a Linux computer server with eight
Nvidia GTX 1080 GPU cards. The model took about 8 hours
to train from scratch. Once the model was trained, it took about
two seconds to synthesize and normalize a CT image slice.
(Source code: https://github.com/selim-iitdu/radiomicGAN)

B. Evaluation Metric

Model performance was evaluated systematically at the
whole image (DICOM) level and with randomly selected
regions of interest (ROIs) in four HU ranges, including
[—800, —300], [—100,250], [10,250], and [300,800]. Since
RadiomicGAN compares standard and non-standard images
in the deep feature space during training, we evaluated the
model performance in the radiomic feature domain. For each
CT image or ROI, a total 1,401 radiomic features were
extracted using IBEX (21). These features belong to seven
feature classes: Gray Level Co-occurrence Matrix 2.5D, Gray
Level Co-occurrence Matrix 3D, Neighbor Intensity Differ-
ence 2.5D, Intensity Direct, Intensity Histogram, Neighbor
Intensity Difference 2.5D, and Neighbor Intensity Difference
3D.

Four state-of-the-art CT image standardization models, i.e.
Histogram matching (22), Choe et al. (10), GANai (7), and
STAN-CT (8), were selected for performance comparison.
Here, the first model is based on traditional method and the
other three methods are deep-learning based models. All the
models, including RadiomicGAN, were developed based on
TensorFlow (23) and trained and evaluated using the same
training and testing data.

We examined the radiomic features reproducibility perfor-
mance using Concordance Correlation Coefficient(CCC) (24).
CCC represents the correlation between the standard and the
synthesized image features in a given features class. CCC
ranges from -1 to 1 and is the higher the better. We conclude
that a radiomic feature is reproducible if the synthesized image
is more than 85% similar to the corresponding standard image
(i.e., CCC > 0.85) (10; 25).

Mathematically, CCC represents the correlation between the
standard and the non-standard image features in the seven
features classes:

cCol =

20,4050

()
020, + (s — )

where us and og (or u; and o;) are the mean and standard
deviation of the radiomic features belong to the same feature
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TABLE I: CT image standardization model performance comparison for images acquired with BI57 kernel. The values
represent the averaged (4standard deviation) number of reproducible radiomic features of the synthesized images generated
using different models. The numbers are rounded to the nearest integer.

HU range Non-standard Hist. Coe et al. GANai STAN-CT Radiomic- | Radiomic- | Radiomic-
matching GAN! GAN? GAN

[-800, -300] 854 + 14 885 + 70 905 + 47 | 979 £47 | 1053 + 10 | 1226 = 47 | 1153 =33 | 1168 £ 36

[-100, 250] 589 + 20 592 + 37 605 + 47 782 + 1 824 + 1 1257 + 5 1183 £ 55 | 1204 £+ 27

[10, 250] 409 + 20 425 + 27 483 £+ 34 | 566 £+ 15 582 + 38 722 £ 41 690 + 34 706 £+ 66

[300, 800] 457 £ 16 494 £ 100 | 511 +40 | 817 £ 20 594 + 9 902 + 20 853 + 54 853 + 54

Average 577 + 18 599 + 58 626 + 42 | 786 £ 21 763 + 14 1027 + 28 970 + 44 983 + 46

TABLE II: CT image standardization model performance comparison for images acquired with Br40 kernel. The values
represent the averaged (+£standard deviation) number of reproducible radiomic features of the synthesized images generated
using different models. The numbers are rounded to the nearest integer.

HU range Non-standard Hist. Coe et al. GANai STAN-CT Radiomic- | Radiomic- Radiomic-
matching GAN! GAN? GAN

[-800, -300] 448 + 14 530 + 64 796 + 14 | 850 £ 15 | 933 + 42 1036 + 25 | 1087 £+ 33 1126 + 43

[-100, 250] 303 + 20 355 +£ 43 437 £38 | 572 +£ 10 | 588 £ 10 1131 £ 29 | 1098 + 44 1108 £+ 25

[10, 250] 211 +£ 53 73 £ 65 167 + 21 205 +37 | 300 £ 192 | 348 + 171 512 + 49 611 + 50

[300, 800] 246 + 16 430 £ 17 357 + 47 | 520 £ 45 487 + 8 1030 + 15 | 1047 +£ 36 | 1047 + 36

Average 302 £+ 26 347 £+ 47 439 £30 | 537 £27 | 577 £ 63 886 + 60 936 + 40 973 + 38

Non-Standard Standard Histogram Matching

Fig. 3: CT image standardization using different models.
An image with a tumor is used as a case study to show the
visual quality of all the compared models. The green rectangle
highlights a tumor in the ROI. The display window is [-800,
800] HU.

class in a synthesized (or standard) image respectively, and
Ps,t 1s the Pearson correlation coefficient between s and t.
CCC ranges from -1 to 1 and is the higher the better.

C. Performance Evaluation

We compared RadiomicGAN with Histogram Matching,
Choe et al, GANai, and STAN-CT. We considered three
versions of RadiomicGAN. The RadiomicGAN was trained
using the proposed window training strategy where both the
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fixed growing approach and the dynamic selection approach
were used consecutively (section II-3). RadiomicGAN! was
a variation trained using the fixed growing approach only,
and RadiomicGAN? was another variation trained using the
dynamic selection approach only.

Table I and Table II indicate the effectiveness of CT
image standardization in different ROIs while standardizing
CT images captured using B157 and Br40 kernels respectively.
RadiomicGAN!, RadiomicGANZ2, and RadiomicGAN outper-
formed the models-to-compare in almost all the evaluation
results for all ROIs. Here, the column named “non-standard”
shows the performance of the images before standardization.

Figure 3 illustrates the performance of all the models
compared using a case study. The nonstandard and the standard
were phantom CT images acquired with the Br40 and Bl64
kernels respectively. The tumor in the image was highlighted
in a green box and was magnified in the left upper corner.
The results of all the models were visualized as well. A
visual inspection indicates that the tumor image synthesized
with RadiomicGAN was the most similar to the standard
image. The total number of reproducible features (computed
using CCC) was 612 for RadiomicGAN, higher than all the
compared methods (Histogram Matching: 82, Choe et al:
183, GANai: 209, and STAN-CT: 307). The RadiomicGAN"®
and RadiomicGAN? have 487 and 512 total number of re-
producible features respectively which are also better than
the compared models. The PSNR score of RadiomicGAN
was 33.23, clearly higher than the compared methods (Hist.
Matching 24.15, Choe et al: 26.08, GANai: 26.14, and
STAN-CT: 26.07). The PSNR score of RadiomicGAN'® and
RadiomicGAN? are 27.85 and 30.09 respectively.

D. Evaluation of Window Training

We have seen from Table I and Table II that Radiomic-
GAN with window training outperforms the existing models
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Fig. 4: The effect of window training in CT image stan-
dardization. Model performance were evaluated with and
without window training.

regarding the number of the reproducible radiomic features.
To identify the optimal window training strategy, an ablation
study was conducted to compare the fixed growing approach,
the dynamic selection approach, and the combined approach.

To further determine the effectiveness of the window train-
ing, we applied it on all the compared CT image standardiza-
tion models. Figure 4 shows the model performance of using
or not using window training for all the compared CT image
standardization models applied on soft tissue ROIs. The x-axis
represents the CT image standardization models and the y-axis
is the number of the reproducible features measured using
CCC. The result shows that RadiomicGAN improved signif-
icantly with window training (t-test, p-value<0.01), whereas
the other models only obtained limited benefit from window
training. It implies window training can be best utilized
together with transfer learning to fine tune a pre-trained deep
learning model.

IV. CONCLUSION

CT image radiomic feature discrepancy due to the use of
non-standard image acquisition protocols adds extra burden
to radiologists and also creates a gap in large-scale cross-
center radiomic studies. The much wider dynamic range of CT
images has been hindering the adaptation of transfer learning
onto the CT image synthesis task. RadiomicGAN addresses
these challenges by efficiently standardizing and normalizing
clinically usable synthetic CT images. A novel window train-
ing strategy is proposed in RadiomicGAN allowing the model
to be gradually exposes to the data points with more local
intensity details, thus significantly improving model perfor-
mance. In the experiments, we systematically extracted 1,401
radiomic features frequently used in radiomic models and the
results show that RadiomicGAN has significantly increased the
number of reproducible radiomic features. In the future, we
will extend RadiomicGAN to standardize CT images acquired
by different CT scanners, further evaluate RadiomicGAN with
patient data collected from multiple institutes, and investigate
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why certain radiomic image features are more difficult to
standardize than the others.
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