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1 | INTRODUCTION
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Abstract

Purpose: The goal is to study the performance improvement of a deep learning
algorithm in three-dimensional (3D) image segmentation through incorporating
minimal user interaction into a fully convolutional neural network (CNN).
Methods: A U-Net CNN was trained and tested for 3D prostate segmentation in
computed tomography (CT) images. To improve the segmentation accuracy, the
CNN’s inputimages were annotated with a set of border landmarks to supervise
the network for segmenting the prostate. The network was trained and tested
again with annotated images after 5, 10, 15, 20, or 30 landmark points were
used.

Results: Compared to fully automatic segmentation, the Dice similarity coeffi-
cientincreased up to 9% when 5-30 sparse landmark points were involved, with
the segmentation accuracy improving as more border landmarks were used.
Conclusions: When a limited number of sparse border landmarks are used
on the input image, the CNN performance approaches the interexpert observer
difference observed in manual segmentation.
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order to achieve good accuracy. One solution to address
the accuracy issue is to use complicated algorithms?

Computed tomography (CT) imaging is the standard
imaging modality used for planning radiotherapy treat-
ments. Segmentation of the target organ and the
organs-at-risk is one of the main postimaging steps in
radiotherapy treatment planning. However, for soft tissue
organs, like the prostate, segmentation of the organ in
CT images is challenging, time-consuming, and subject
to high interobserver variability.’

Using computer-assisted segmentation approaches
could be an effective solution to decrease the segmen-
tation time and improve the repeatability of the task.
Recently, deep learning approaches are widely used
for fully automatic medical image segmentation? They
showed fast and accurate segmentation performance in
many cases.3~’ However, convolutional neural network
(CNN) often requires a large amount of training data in

which requires intense calibration and fine-tuning; thus,
the performance can be sensitive to the data and the
selected hyperparameters. Another solution could be
incorporating an expert operator interaction for guid-
ing the network. However, deep learning is mostly used
for fully automatic segmentation, and applying user
inputs is not common in deep learning algorithms. Girum
et al. have presented an interactive deep learning-based
image segmentation approach and tested it on prostate
CT images? Their approach is a slice-by-slice segmen-
tation technique that needs manually selected points on
all the 2D slices in a systematic way. They showed that
their algorithm could provide high accuracy and robust-
ness to interclinical image variation.

In this paper, we supervised a fully CNN (U-Net’) with
minimal manual initialization to study the performance
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improvement of the network in image segmentation. We
applied the user inputs by annotating the images. We
tested our method on three-dimensional (3D) segmen-
tation of the prostate in CT and compared the segmen-
tation results to fully automatic segmentation performed
by U-Net on the same dataset. We used a radiologist
manual segmentation as the reference standard to eval-
uate our approach. The U-Net architecture was imple-
mented in 3D to have a fully 3D segmentation,and anno-
tated input images were used as the operator’s input.
Unlike reference 9, in this study, it is not required to select
points on all the slices and the points were not system-
atically selected. The number of selected points could
be flexible (here we tested the algorithm based on 5—
30 points per 3D image volume). The main contribu-
tions in this study include (1) the idea of using a sim-
ple and effective method to incorporate user interaction
into CNN training and testing and (2) a less restricted
boundary landmark selection (nonsystematic) for initial-
izing the segmentation compared to the state-of-the-art
approaches.

2 | MATERIALS AND METHODS

21 | Data

Our dataset has 92 3D abdominal CT scans from 92
prostate cancer patients. On each image, an expert radi-
ologist manually segmented the prostate. The dataset
contained CT images with original size of 512 x 512 x
27 voxels and 0.977 x 0.977 x 4.25 mm?3 voxel size. The
volume range of the prostate in the dataset based on the
manual segmentation labels is from 12.1 to 79.3 cc with
average volume of 26.8 cc (standard deviation = 9.6 cc).
We randomly selected and used 65% of the patients (60
patients) for training, 10% of the patients (9 patients)
for validation, and the remaining 25% (23 patients) were
reserved for the final test.

2.2 | Preprocessing

To reduce the intersubject intensity and pattern variabil-
ity, we extracted one histogram for all the prostate voxels
in the training set and removed the 0.5% outliers, 0.25%
from each histogram end. The observed Hounsfield unit
(HU) range for prostate tissue voxels in the training set
was [—72, 112]. We truncated the HU range on the CT
images within the range of —127 to 128 based on the
observed range to have an 8-bit dynamic range (i.e., 256
intensity levels). Then we scaled the dynamic range of
the image intensities to the range of zero to one. Since
the prostate volume occupied less than 5% of the whole
cropped image volume on average, we decided to crop
the image volumes to the size of 96 x 96 x 15 voxels
around the prostate region to minimize the memory load

for the graphics processing unit (GPU). We automati-
cally cropped the images using the manual segmenta-
tion labels as reference to have the whole prostate within
the volume.

23 |
231 |

Operator manual interaction
Experiment |

We included a set of sparse boundary landmarks ran-
domly selected on the prostate surface simulating an
operator’s input used for guiding the prostate segmen-
tation. We used the manual segmentation label provided
by the radiologist for each CT image to select the land-
marks. During the random selection of the landmark
points, we applied a restriction of a minimum accepted
distance between each point pair. To define the minimum
accepted distance between the points, we approximated
the prostate shape as a sphere with the same volume.
Then we evenly distributed the same number of points
on the surface of the sphere and found out the dis-
tance between the adjacent points. Here we defined the
minimum accepted distance between point pairs on the
prostate surface as 80% of the measured distance for
the points on the sphere. To provide the information of
the point locations to the CNN, we made a binary mask
of the point with the same size as the image; the vox-
els of the binary mask had values of one on the loca-
tion of each selected point and zero everywhere else.
We applied a two-dimensional (2D) Gaussian filter to
the binary mask to make a normal intensity distribution
around the points. This makes a gradient around each
point and allows the CNN to extract features from point
locations. Annotating a single voxel at each point could
make it challenging for the CNN to differentiate between
noise and the intended markers. We then subtracted the
filtered mask from the image to annotate the image at
the location of the selected points. The subtraction helps
to have a good contrast between the point and the sur-
rounding tissues regardless of the tissue intensity level.
Figure 1 illustrates the annotation process steps. We
used the annotated image as the single input channel
of a U-Net model. For each training, validation, and test
image, we repeated random point selection five times.

2.3.2 | Experimentll

We selected the points at the challenging apex and
base regions to study its impact on the algorithm
performance. We selected two of the points at the
center of the prostate tissue on the inferiormost
(apex) and superiormost (base) slices to define the
prostate inferior—superior bounds manually for the net-
work. The points were randomly distributed on the
inferior third and superior third of the prostate. Any
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Annotated Image
(CNN Input)

Image annotation with the selected points. (a and d) The prostate CT image; the prostate boundary overlaid on (a) in yellow as a

reference, (b) the binary mask of the selected surface points, (c and e) the normal intensity distribution around the points after Gaussian filtering,

and (f) the image annotated at the location of the selected points

voxel beyond the defined prostate bounds misclassi-
fied by the network was labeled as background during
postprocessing.

2.3.3 | Experimentlll

To quantify the sensitivity of the segmentation results
to the interobserver variability in point selection, we
conducted a simulation study by in-plane (intraslice)
perturbation of the landmark points positions. To cal-
culate the position of each perturbed point, we ran-
domly sampled from 2D Gaussian distributions with
mean defined on the originally selected landmark point
on the reference prostate contour. The standard devia-
tion of the Gaussian distribution was selected as 2 pix-
els. We used the perturbed landmark points for training
and testing the network with the same setting used for
Experiment I.

2.4 | Fully convolutional neural network
architecture training

In this work, we customized a U-Net for 3D images, with
the architecture shown in Figure 2. We trained the U-
Net in two different conditions: (1) using the original CT
images and (2) using the annotated CT images for train-
ing and testing the models. For both conditions, we used
the Adadelta optimizer with a loss function based on
“soft Dice” similarity coefficient® defined as follows:

2% (P (Xi) Vi)
ik (p (xi)) + ik (Vi)

L=1- (1)

where Zijk() is summation of matrix elements across
all the three axes, p(x;y) is the probability value at coor-
dinate (i, j, k) on the output probability map, and yjj is
the value of the reference binary segmentation mask at
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FIGURE 2 A four-level, 3D U-Net architecture used in this study. The number of feature maps and the size of each feature map at each
layer have been mentioned above and below the layer, respectively. To avoid overfitting and to make the network more stable, at the layers

shown in orange, 40% of the activations are randomly dropped out

the corresponding coordinate. yj; is either one (for the
prostate voxels) or zero (for the background voxels).

We used the TensorFlow'? machine learning API in
Python to implement the U-Net model on a desktop com-
puter with 512 GB of memory and NVIDIA TITAN Xp
GPU.

2.5 | Evaluation metrics

We used Equations (2)—(4) to measure Fq-score or Dice
similarity coefficient!’ (DSC), sensitivity (or recall) rate
(SR), and precision rate (PR), respectively, for compar-
ing the algorithm segmentation results against manual
segmentation.

_2(SnR)

DSC = =& x 100 2)

sR =30FR o 100 (3)
R

PR = SgR x 100 (4)

where S is the algorithm segmentation volume and R is
the reference segmentation volume. (Sn R) is the vol-
ume of the overlap between S and R. All the metrics are
reported in percent in this paper.

3 | RESULTS

Table 1 shows the results of Experiment I. It shows the
mean + standard deviation of DSC, SR, and PR values

measured on the test data using the automatic segmen-
tation as well as using 5, 10, 15, 20, and 30 randomly
selected points. We used one-way ANOVA test followed
by ad hoc t-tests (one-tailed) to detect statistically sig-
nificant improvement through the use of image annota-
tion. Figure 3 illustrates the qualitative results for three
sample patients. Table 2 shows the evaluation metrics
values for different regions of interest (ROIs) includ-
ing whole prostate gland as well as prostate base, mid-
gland, and apex subregions using 20 selected points.
Here the superiormost and the inferiormost thirds of the
prostate on reference segmentation labels were called
base and apex, respectively, and the middle third called
mid-gland. Table 3 shows the results of Experiment I
when the points were selected at the apex and base
regions. Each metric value in Table 3 was compared to
the corresponding value in Table 1, with statistically sig-
nificant improvements shown in bold.

To evaluate the precision of the segmentation algo-
rithm when different sets of points are selected, we
applied a pairwise comparison between the results of
the five repetitions for each prostate using DSC met-
ric. For each prostate, we had five segmentations based
on five different point selections. We measured DSC
between each of the two segmentations and calculated
the mean and the standard deviations of all the DSC val-
ues. In an ideal situation, the five repetitions should be
identical and the DSC values should be 100%. Table 4
shows the average of the mean and standard deviation
values across the test images.

Table 5 shows the results of Experiment Ill. The val-
ues in the table were compared to the correspond-
ing values in Table 1 using two-tailed t-test. The val-
ues in bold shows the statistically significant difference
detected between each pair of values.
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TABLE 1 Quantitative results of 3D image segmentation performance on the test data when 0, 5, 10, 15, 20, and 30 points were selected

Condition # Images (3D) DSC (%) SR (%) PR (%)
Automatic 23 81.5+4.5 91.5+57 74.4 + 91

5 input points 23x5 83.2+ 3.8%° 87.7 + 8.9 80.6 + 8.7™M
10 input points 23 x5 83.4 +3.8cd 88.2 + 7.1 80.2 + 8.6fP
15 input points 23 x5 83.9 + 3.5¢f 89.8 + 6.4K 79.8 + 8.9%
20 input points 23x5 85.7 + 3.48c¢9 89.7 + 6.7" 83.0 + 7.4moas
30 input points 23x5 90.8 + 1.9bdfg 95.3 + 3.4iK 87.0 + 3.7mPrs

For each test image, random point selection was repeated five times. The values in bold indicate statistically significant improvements compared to the automatic
method (p < 0.05). Corresponding letters show statistically significant differences between semiautomatic approaches using different number of points (p < 0.05).

Reference Automatic 5input points 10 input points 15 input points 20 input points
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FIGURE 3 Qualitative results for three sample cases. The green semitransparent shapes are the reference segmentations provided by an
expert radiologist, and the solid purple shapes show the algorithm results. The used points for annotation have been shown in yellow dots. The
DSC value for each condition was provided underneath

TABLE 2 Quantitative results of 3D image segmentation 4 | DISCUSSION
performance on different ROIs when 20 points were selected
# Images Comparing the results shown in Table 1 for different
Condition  (3D) DSC (%) SR (%) PR (%) train and test conditions, it is shown that using manu-
Whole 23% 5 857+34 897+67 830+74 ally selected points fused to the input image could help
gland the CNN segment the prostate with increased accuracy.
Base 23% 5 829+72  88.8+12.8 804+11.0 Using only five input points could improve the DSC by
o : .
Mid-gland 23 x 5 89.0428 926446  87.9 4 6.1 about 2%. The results also showed that increasing the

number of input points could improve the segmentation
performance. In Table 1, although the SR value for auto-
matic segmentation is about 2%—4% higher than that of
the point-based segmentations (when 5-20 input points
were selected), the PR value is about 5%—13% lower

Apex 23x5 82,5 +6.6 87.0 +9.8 80.5+11.4

For each test image, random point selection was repeated five times.
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TABLE 3 Quantitative results of 3D image segmentation performance when points were selected only at apex and base regions
Condition # Images (3D) DSC (%) SR (%) PR (%)

5 input points 23 x5 85.1 + 2.72bcd 89.6 + 7.9 82.1 + 6.8
10 input points 23x5 85.8 + 2.92°f9 89.3 + 7.5™ 83.4 + 6.3
15 input points 23x5 86.9 + 2.4behi 90.6 + 6.6°° 84.3 + 6.3
20 input points 23x5 88.1 + 2.0°M 93.1 + 4.0kmeq 84.0 + 4.8V
30 input points 23x5 90.1 + 2.149i 95.0 + 2.6"Pa 85.8 + 4,25

For each test image, random point selection was repeated five times. Corresponding letters show statistically significant differences between approaches correspond
to different numbers of points (p < 0.05). The values in bold are significantly improved compared to the corresponding value in Table 1 (p < 0.05).

which means a higher false positive rate. Moreover, it is
important to note that the SR and PR values need to be
interpreted together to have a better understanding of
the algorithm performance. For example, a high SR and
alow PR means the algorithm is oversegmenting. There-
fore,the results in Table 1 show that using the points help
the network to mitigate the oversegmentation observed
in automatic segmentation in this case.

The DSC value observed in this study started from
about 82% for automatic segmentation and increased
to about 91% when up to 30 landmark points were
involved. The results in Table 2 show that the algo-
rithm performed more accurately at the midgland subre-
gion compared to apex and base subregions, while the
results of Table 3 indicate that DSC could be improved
in general using points distributed on challenging apex
and base regions only. However, comparing the last rows
of Tables 1 and 3 shows that when 30 input points
were used, the performance of the algorithm was sig-
nificantly better when the points were well distributed on
the prostate surface. Zhang et al 8 reported a lower aver-
age DSC (88%) with substantially higher standard devi-
ation (11%) compared to our best segmentation results
(DSC of ~91% =+ 2%) using a complicated state-of-
the-art algorithm based on general adversarial network.
Their method is a 2D slice-by-slice segmentation. Com-
paring our results to the results of a nondeep learn-
ing method based on incorporation of patient-specific
knowledge (DSC = 85% + 3%)'? also demonstrates that
our approach outperformed their method even when
only 10 points have been used at apex and base regions.

Comparing the DSC trend (from 81.5% to 90.8%
using 0 to 30 input points, respectively) to the average
interexpert observer difference in manual prostate seg-
mentation in CT on the same test dataset (~92%)"?
shows that using minimal user interaction could improve
the segmentation results to approach the expert
observer performance. The DSC score between the
two manual segmentations were measured as the inter-
observer difference, and the average of DSC scores
across the test set was reported as the average inter-
observer difference.

The high values in Table 4 show that the algorithm is
precise and the segmentation performance is robust to

the changes in the selected landmark points. The aver-
age variability in the results increased up to about 8%
when the selected landmarks were changed. This vari-
ability is zero for automatic segmentation, as no land-
mark point is used (highest precision). Interpreting the
results in Tables 1 and 4 shows that adding the landmark
points and increasing the number of the selected points
increased the accuracy of the algorithm while its pre-
cision dropped slightly. In automatic segmentation, the
CNN uses features extracted from the image only. How-
ever,when the images are annotated with landmarks, the
CNN uses a combination of the features extracted from
the input image and the input points. The greater the
number of points used, the fewer the features extracted
from the image as the CNN is more focused on the land-
marks. Therefore, the variability in the location of the ran-
domly selected landmarks impacted the precision of the
algorithm especially when the number of selected land-
marks was increased. By applying random perturbation
to the location of the points to mimic interobserver vari-
ation in selecting the point, we did not detect a statis-
tically significant drop in the DSC values when 5-15
input points were used (see Table 5). However, using
more input points decreased the DSC by up to about
3%. By adding more input points, the CNN relies on the
point information more and the perturbation could have
a higher impact on its performance.

In this study, we used a uniform random or semiran-
dom distribution of the points on the prostate surface
to initialize the algorithm. This approach could be con-
sidered as a general form of systematic approaches
for point selection (similar to what used in references
14 and 9) and might be generalizable to those condi-
tions. However, the findings of this research study need
to be tested and confirmed using a more realistic point
selection such as systematic or free form point selection
approaches.

As another observation, we have seen some cases
where unexpectedly the network results did not pass
through the input points (e.g., see 20 input points case
for patient #1 in Figure 3). This may be due to the
stronger image-derived features extracted by the net-
work compared to the features extracted based on the
point annotation. Modifying the annotation approach
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TABLE 4 The precision of the segmentation algorithm

5 input points 10 input points

15 input points 20 input points 30 input points

Precision (%) 97.0+0.3 96.7 + 0.4

96.5 + 0.6 95.7 + 0.5 91.9+1.2

The precision was measured based on five repetitions in random landmark point selections for each test image. The precision value for each case is measured using

the average DSC value calculated between different algorithm result pairs.

TABLE 5 Quantitative results of 3D image segmentation performance when the selected points on the reference contour were perturbed

randomly around the border points

Condition # Images (3D) DSC (%) SR (%) PR (%)

5 input points 23 x5 81.7+ 3.8 84.2 +10.7 81.3+89
10 input points 23 x5 825+ 4.1 86.5 + 8.1 80.2 + 8.8
15 input points 23 x5 83.1+3.6 86.9 + 8.8 81.1+8.9
20 input points 23 x5 84.3+29 89.4 +6.4 80.7 +7.7
30 input points 23 x5 87.7+25 929+ 4.6 83.4+54

For each test image, random point selection was repeated five times. The values in bold are significantly different from the corresponding value in Table 1 (p < 0.05).

could be helpful for better detection of the points by CNN
and might improve the segmentation performance.

Using this method could decrease the prostate seg-
mentation time. Our previous studies showed that
selecting border points on CT images for initializing the
segmentation took less than 20 s per 3D image'#, which
is several times shorter than fully manual segmentation
time.

The idea of supervising a CNN-based segmentation
by manual interaction could be tested on other datasets
for different organs.

For this study, we used a set of well-distributed, ran-
domly selected surface landmarks to mimic an opera-
tor’s interaction. However, in a real situation, the points
manually selected by an operator are not necessarily
well distributed on the prostate surface and thus our
assumption is not always true. The number of selected
points from case to case could also be different and the
CNN model might need to be trained and tested using
variable numbers of selected points. For this work, we
used the hyperparameters from our previous study for
prostate segmentation in CT images.'® We also avoided
max pooling along z direction according to our previous
observations.'® Optimizing the hyperparameters of the
network to this specific task could improve the results.
As another limitation of this study, the image volumes
were automatically cropped around the prostate region
due to the limitation of the GPU memory capacity in
accommodating the image and the feature maps. This
added a step of user interaction (i.e., defining a gener-
ous bounding box around the prostate) to the segmen-
tation process. In future, we need to study the impact
of prostate localization accuracy and the cropping size
on the algorithm performance. We compared the results
of this study to the interobserver difference observed in
manual segmentation to take the variability into account.
In future, for a more comprehensive evaluation of the

algorithm, it is required to compare the results to multi-
ple expert observers.

5 | CONCLUSIONS

We proposed a segmentation approach to guide the
CNN with a set of selected border landmarks for a better
CT segmentation performance. We used U-Net as a full
CNN because it is widely used in medical image seg-
mentation. We annotated CNN’s input images using the
selected points to incorporate the manual interaction in
training and testing the network. The results showed an
improved segmentation performance by using a limited
number of sparse border landmarks annotated on the
image. By selecting 30 landmark points, the CNN perfor-
mance was close (DSC < 2%) to the average interexpert
observer difference observed in manual segmentation.
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