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ABSTRACT  

Surgery is a major treatment method for squamous cell carcinoma (SCC). During surgery, insufficient tumor margin may 

lead to local recurrence of cancer. Hyperspectral imaging (HSI) is a promising optical imaging technique for in vivo cancer 

detection and tumor margin assessment. In this study, a fully convolutional network (FCN) was implemented for tumor 

classification and margin assessment on hyperspectral images of SCC. The FCN was trained and validated with 

hyperspectral images of 25 ex vivo SCC surgical specimens from 20 different patients. The network was evaluated per 

patient and achieved pixel-level tissue classification with an average area under the curve (AUC) of 0.88, as well as 0.83 

accuracy, 0.84 sensitivity, and 0.70 specificity across all the 20 patients. The 95% Hausdorff distance of assessed tumor 

margin in 17 patients was less than 2 mm, and the classification time of each tissue specimen took less than 10 seconds. 

The proposed methods can potentially facilitate intraoperative tumor margin assessment and improve surgical outcomes.  
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1. INTRODUCTION 

Head and neck cancer is the sixth most common cancer worldwide [1-3]. Squamous cell carcinoma (SCC) takes more than 

90% of the cancers of the upper aerodigestive tract of the head and neck [2]. Surgical resection has long been the major 

and standard treatment approach for head and neck SCC. One of the main challenges during surgical treatment is to obtain 

a high cure rate while realizing organ preservation [4-6]. Extension of tumor cells into the area around the resection, 

namely the surgical margin, may lead to local recurrences and second primary tumors that might subsequently worsen the 

surgical survival [2, 7, 8]. Therefore, an adequate margin, which varies from 5 mm to 20 mm [7, 9], is required during 

surgery.  

Current intraoperative methods for surgeons to differentiate tumor and normal tissue are visual inspection,  palpation, and 

frozen section [7, 8]. The resected tissue specimen is frozen and processed for an intraoperative pathologist consultant 

(IPC). Frozen section analysis (FSA) is the standard for tumor margin assessment. However, this procedure takes about 

25~45 minutes per IPC, and it is susceptible to errors that occur during sampling and histological interpretation [9-13]. 

The incident rate of insufficient margin is 40%-50% [11, 12]. Thus, methods for fast and accurate surgical margin 

assessment are critical to improving surgical outcomes of head and neck cancer resection.   
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Hyperspectral imaging (HSI) is an optical imaging technique that is non-invasive, non-contact, and label-free. It expands 

surgeons’ vision from visible wavelength range to infrared and is able to utilize the rich spectral information of tissue, 

which reveals the change of tissue optical properties caused by the presence, progression, or regression of neoplasia [14]. 

HSI has been investigated for cancer detection in both in vivo and ex vivo tissues. A previous study of in vivo head and 

neck cancer detection using hyperspectral imaging has been performed by our group [15] on an animal model (N=12). A 

support vector machine (SVM) classifier using the tensor-based feature of spectral signature was implemented with 0.89 

accuracy. Next, in vivo HSI and SVM classification were implemented on a mouse model of neoplastic 4NQU-induced 

tongue carcinogenesis, and the area under the curve (AUC) was 0.84 [16]. Later on, an ex vivo HSI head and neck cancer 

detection study in surgical specimens of 26 patients using SVM achieved 0.86 inter-patient accuracy [17]. In a recent study, 

our group  [18] implemented deep learning classification using the Inception-v4 convolutional neural network (CNN) on 

25×25-pixel patches. The network was trained and tested on a dataset of 102 SCC patients and achieved a patch-level 

AUC of 0.82.  

In this study, U-Net architecture as a fully convolutional network (FCN) was implemented for tumor margin assessment 

in SCC surgical specimens. Compared to our previous studies [18] in which a trained fully-connected CNN was used for 

patch-level classification, this study aims to classify tumor and normal tissue in the images to generate pixel-level class 

labels for hyperspectral images. The robust experimental design and preliminary results of this study show the potential 

for our proposed method to aid fast and intraoperative surgical margin assessment. 

2. METHODS 

2.1 Hyperspectral Dataset of Head and Neck SCC Patients 

The hyperspectral image dataset has been reported in our previous work [18]. Surgical specimens of head and neck SCC 

were collected when HNSCC patients underwent routine surgery. Hyperspectral images of the fresh ex-vivo surgical 

specimens were captured for the cancer detection study. For each patient, three specimens were collected, containing the 

primary tumor (T), normal tissue (N), and tumor-normal margin (TN), respectively. In this study, we used hyperspectral 

images of 25 conventional head and neck SCC specimens from 20 different patients. The specimens were from the larynx 

(22 specimens from 17 patients) and hypopharynx (3 specimens from 3 patients). Only the images of tumor-normal margin 

specimens were utilized for margin assessment. 

The hyperspectral images were captured with a Maestro spectral imaging system (Perkin Elmer Inc., Waltham, 

Massachusetts). The system contained a liquid crystal tunable filter for spectral scanning over 91 wavelength bands from 

450 nm to 900 nm with a 5 nm increment, and a 16-bit charge-coupled device (CCD) to capture two-dimensional grayscale 

images at each wavelength band. The spatial size of the hyperspectral images field of view (FOV) varies from 6.4 mm × 

6.4 mm to 19.2 mm × 16 mm with a median size of 12.8 mm × 9.6 mm, and the specimen-level resolution is 25 um per 

pixel [18].  

2.2 Data Preparation 

After image acquisition, the ex vivo surgical specimens were inked, formalin fixed, and paraffin embedded. The top section 

of each specimen was obtained using a microtome, stained with hematoxylin and eosin (H&E), and digitalized using 

whole-slide scanning at 40× magnification [18]. A board-certified pathologist annotated the digital histology images to 

outline the cancerous and normal areas, then the histological ground truth was registered to the gross-level hyperspectral 

image using a deformable registration pipeline [19] and served as the gold standard.  

Hyperspectral images were firstly calibrated with a white reference image and a dark reference image to obtain the 

normalized reflectance of the tissue specimens. Then, image patches were generated from the hyperspectral images using 

a sliding window. In this study, we trained the network with large image patches, because we had a relatively small dataset, 

and generating patches from the images could provide adequate training data for the network. In addition, we tried to have 

more patches for each specimen even the smallest one, so as to ensure enough training iterations that make the moving 

average and variance of the batch normalization layers in our network coverage. Therefore, we used a sliding window with 

strides of five pixels for small SCC specimens, and a sliding window with strides of 25 pixels for large specimens. The 

dimension of the generated patches was 256 pixels by 256 pixels by 91 bands. For the training data, only patches containing 

the tumor-normal margin were used to train the network, while the patches with only-tumor or only-normal tissue were 
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not used in the training process. For each patient, we randomly selected an equal number (N=80) of patches of the tumor-

normal margin to avoid model overfitting to specific patients caused by unbalanced patch numbers.  

Except for the patches generated from a few hyperspectral images that included very little tumor or normal tissue, the 

number of tumor pixels and normal pixels in the training patches were as balanced as possible. Due to the limited size and 

irregular shape of the tissue, most patches contain background pixels, which have very different spectra from tissue pixels.  

The percentage of tissue pixels in each patch also varies because of the different sizes and shapes of specimens. Each patch 

was augmented eight times by rotating and reflecting before training. Figure 1 shows an example of a generated patch 

from the hyperspectral image of the SCC specimen. 

Due to the absence of the original RGB images of the specimens, we generated pseudo-RGB patches for each HSI patch, 

as also shown in Figure 1, and used the pseudo-RGB patches to train and validate the same network as HSI, in order to 

evaluate the usefulness of HSI compared to RGB. We used a customized HSI-to-RGB transformation, which is made up 

of several cosine functions and is close to the light response of the human eye, as has been described in our previous study 

[20]. However, due to the difference in the spectral range of hyperspectral imaging systems, we slightly modified the 

magnitudes of three channels to make the synthesized RGB images close to the real color.   

 

Figure 1. Illustration of the generated HSI patch and pseudo-RGB patch from the tumor-normal margin of an SCC specimen. The tumor 

is shown with a dashed contour in the pseudo-RGB image.  

2.3 Fully Convolutional Neural Network 

A two-dimensional fully convolutional network based on the U-Net architecture [21] was implemented using Keras with 

a Tensorflow backend. The hyperspectral patches discussed in the previous section were utilized to train and validate the 

U-Net on a Titan XP NVIDIA GPU. The three-level U-Net shown in Figure 2 contains 10 standard convolutional layers, 

each of which was followed by a batch normalization layer [22] and ReLU activation. The kernel size of the convolutional 

layers in the first level was 5×5, while the kernel size of other standard convolutional layers was 3×3. The optimizer was 

Adam [23] with a learning rate of 5×10-5. The network was trained with a batch size of 12 for 6 to 12 epochs depending 

on how fast the validation accuracy stopped increasing. All convolutional layers were initialized with Xavier kernel 

initializer. L2 regularization [24] with an L2 constant of 10-7 was applied for each convolutional layer, and dropout [25] 

with the dropout ratio of 15% was applied after each block of convolutional layers. For loss function, we tried categorical 
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cross-entropy and Dice coefficient-based loss [26]. Both loss functions had comparable performance and finally, 

categorical cross-entropy was selected as the loss function. The FCN that was trained using the pseudo-RGB patches had 

the same architecture and hyperparameters as the one trained with HSI patches, except that the size of the input layer was 

256×256×3.   

Due to the small size of the dataset used in this study, we created training and validation cohort of patches. For both FCNs 

(HSI and pseudo-RGB), we implemented 10-fold cross-validation. For each fold, the images of 18 patients (11520 patches 

in total) were used for training and the images of two patients (1280 patches in total) were used for validation. So, all 

patient data have been used for validation but in different folds. The patches from the same patient were never used in both 

training and validation at the same time. Moreover, the data partition for both FCNs was exactly the same to avoid the bias 

of comparison between two networks. The FCNs were trained with labels of three classes, namely tumor, normal, and 

background. Later in the validation process, only the tissue (tumor and normal tissue) pixels were used for evaluation.  

Besides this network, we also tried a three-level U-Net with half number of features and a four-level U-Net. The U-Net 

with fewer features had a worse training performance, and the deeper network was easily over-fitted to one class (either 

tumor or normal) when trained on a subset of the data. Moreover, in comparison to our previous work [18, 27], which used 

smaller patches of 25×25 pixels and more complicated network architecture (Inception-v4), our U-Net was able to achieve 

pixel-level classification with far less convolutional layers. 

Max pool 2×2

Up-convolution 2×2, ReLU

Output labels

256×256×3
256×256×64

128×128×128

64×64×256

Input patch

256×256×91

Feature map (copied)

Feature map (dropout applied)

Feature map Convolution 5×5, ReLU

Convolution 1×1, Softmax

Convolution 3×3, ReLU

Copy and concatenate

256×256×64
128×128×128

 

Figure 2. The three-level U-Net architecture with 10 standard convolutional layers. 

 
2.4 Evaluation Metrics 

Although the network was trained with three classes of labels, we only used the pixels of tissue but not the background in 

each hyperspectral image for evaluation. In other words, we used only the pixels that are labeled as either tumor or normal 

tissue in ground truth to calculate the metrics. The reasons for not counting on the background pixels are: (1) background 

can be easily differentiated from tissue due to its distinct spectrum and it is hardly misclassified, and (2) background was 

not included in all patches.  

In this study, we used pixel-level overall accuracy, sensitivity, and specificity to evaluate the classification performance, 

as shown in Equation (1-3). Overall accuracy is defined as the ratio of the number of correctly labeled tissue pixels to the 

total number of tissue pixels in the ground truth. Specificity and sensitivity are calculated from true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN), where positive corresponds to tumor pixels and negative to 

normal tissue pixels. Specificity is the ratio of TN pixels to the normal pixels, while sensitivity is the ratio of TP pixels to 

the tumor pixels.  
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𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
                                                                          (1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                        (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                                                       (3) 

Because of the complex shape and variant area of tumor tissue in different images, the abovementioned metrics do not 

necessarily show how well the tumor margin is assessed. Therefore, we calculated the Hausdorff distance (HD) of each 

classified tumor region and used it as another evaluation metric. There are two versions of HD, namely the maximum HD 

and 95% HD. The maximum HD is defined as the maximum distance of a set to the nearest point in another set [28], which 

in this study is the maximum distance between the margin of the predicted tumor tissue and the margin of tumor tissue in 

the ground truth. However, maximum HD is subject to noise, thus the impact of a very small subset of the outliers may 

result in a very high HD and cause the bias of evaluation. Therefore, we used 95% HD, which is the 95th percentile of the 

distances between boundary points in the predicted tumor region and the ground truth, as shown in Figure 3. The calculated 

95% HD in pixel was transformed to and recorded in millimeters according to the spatial resolution of the image (25 

µm/pixel).  

95% HD 

between two 

boundaries

 
 

Figure 3. Evaluation of the marginal error using 95% Hausdorff distance.  The white boundary indicates the ground truth of the tumor 

margin. The red region is the predicted tumor area while the green region is the predicted normal tissue. 

 

3. RESULTS  

The model was trained with only the patches that contain the tumor-normal margin, and for each patient, we used 80 

patches. After the model was trained, we generated patches from the whole validation patient images using a sliding 

window with a stride of 128 pixels. All patches, regardless of how much tumor or normal tissue was included, were used 

for validation. The number of validation patches per specimen was one to ten, depending on the spatial size of the 

specimen. The generated validation patches were also eight times augmented by rotations and reflections. The 

classification time for all patches of one specimen was less than 10 seconds. After classifying all the patches, the average 

probability map for each patch was calculated across all eight augmented versions of the patch. Then, the probability map 

of the whole image was reconstructed by stitching all patches. For the overlapped areas, the average probabilities of the 

overlapped pixels were calculated and used. Afterwards, the accuracy, sensitivity, and specificity of the validation images 

were calculated using the probability map of the whole image. The optimal threshold levels based on the receiver operator 

characteristic (ROC) curve for validation data in different folds were 0.27 to 0.78. The same threshold was applied to all 

validation data in the same fold to generate classification labels.  

We performed morphological opening and closing to the classification label images to smooth the tumor-normal margin. 

In a few cases, some pixels of the tumor tissue were classified as normal but were surrounded by tumor pixels, or some 

pixels in normal tissue were classified as tumor but surrounded by normal pixels. If the area of these misclassified pixels 

was smaller than 40 pixels×40 pixels (1 mm×1 mm), we filled this region with the same label as the surrounding pixels. 
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Otherwise, we kept the misclassified region. When calculating the 95% HD of tumor, the normal pixels that were classified 

as tumor were not used. Moreover, in some specimens, the edge of the tissue was very thin, which resulted in 

misclassification in the very narrow region surrounding the specimen. Therefore, we excluded 10 pixels, corresponding to 

0.25 mm, at the edge of each specimen for performance evaluation.  

The network was able to perform tissue classification in hyperspectral images of SCC surgical specimens with a pixel-

level average AUC of 0.88 for the validation patients. The average accuracy, sensitivity, and specificity were 0.83, 0.84, 

and 0.70, respectively. However, there were two images (PT154 and PT172) where almost no margin was detected and 

the whole specimen was classified as one type. Similar situation also happened in the previous study using a patch-based 

CNN classification method [29]. Because the specimen of PT154 was classified as all normal with no predicted tumor 

pixels, we could not calculate the HD for this patient. For the specimen of PT172, which was classified as all tumor, the 

95% HD was calculated between the boundary of the whole specimen and the tumor margin in the ground truth. If exclude 

these two images, the network could achieve an average AUC of 0.93, as well as 0.86 accuracy, 0.88 sensitivity, and 0.72 

specificity. The maximum errors of assessed margin in the classified images of 18 patients (except PT154 and PT172) 

were smaller than 3 mm. In 17 out of 18 patients, the maximum margin error was smaller than 2 mm, among whom 9 

patients had marginal error no larger than 1 mm. The median value of the 95% HD of 19 patients (except for PT154) was 

1.03 mm. The classification results using the hyperspectral images of all patients are shown in Table 1. 

 
Table 1. The validation performance of each patient.  

PT # Organ* 
No. of  

T pixels 

No. of   

N pixels 
AUC Accuracy Sensitivity Specificity 

95% HD 

(mm) 

2 HYPO 27k 24k 0.95 0.82 0.82 0.81 1.41 

27 LARN 53k 146k 0.89 0.93 0.93 0.93 1.24 

29 LARN 79k 15k 0.99 0.95 0.95 0.98 1.03 

30 LARN 52k 25k 0.82 0.73 0.82 0.52 2.00 

41 LARN 21k 11k 0.91 0.81 0.86 0.72 1.00 

43 HYPO 30k 18k 0.92 0.94 1.00 0.84 0.92 

62 LARN 26k 37k 0.99 0.91 0.98 0.86 0.63 

68 HYPO 77k 23k 0.99 0.91 0.88 0.99 1.24 

74 LARN 67k 34k 0.98 0.88 0.99 0.67 1.77 

110 LARN 5k 31k 0.77 0.80 0.10 0.94 1.5 

127 LARN 44k 11k 0.99 0.97 0.99 0.90 0.43 

134 LARN 38k 4k 0.99 0.90 0.91 0.84 0.62 

137 LARN 32k 17k 0.82 0.63 0.96 0.10 3.00 

154 LARN 15k 28k 0.2 0.65 0 1 -- 

166 LARN 52k 44k 0.88 0.70 0.91 0.53 1.50 

172 LARN 28k 43k 0.76 0.40 1 0 7.17 

174 LARN 95k 10k 0.98 0.92 0.97 0.39 0.97 

184 LARN 50k 5k 0.97 0.90 0.97 0.20 1.00 

187 LARN 20k 37k 0.98 0.93 0.89 0.95 0.71 

188 LARN 29k 39k 0.88 0.83 0.92 0.77 1.00 

* HYPO: hypopharynx;  LARN: larynx 

 

The classification results of five different patients are shown in Figure 4. In the histology ground truth, the green annotation 

indicates the tumor region, while for the specimen shown in the second column in Figure 4, the whole slide was tumor 

except the region annotated in blue (dysplasia). The network was able to classify the tumor with a marginal error of less 

than 2 mm. Compared to the patch-based CNN in our previous study [18, 29], the U-Net model was less sensitive to glares 

with a better ability for high-precision margin assessment.  
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The classification results using pseudo-RGB images were not as good as HSI in most specimens except for PT30. The 

network trained with pseudo-RGB patches got an average AUC of 0.84, as well as 0.71 accuracy, 0.80 sensitivity, and 

0.64 specificity. The classification using pseudo-RGB patches was very much affected by the glares in the image. Tissue 

with most glares tended to be classified as tumor (white arrows in Figure 4) while tissue with very little glares was most 

likely to be classified as normal (black arrows in Figure 4). It is worth noting that the network was optimized for HSI, 

which might have caused some bias for the evaluation of RGB images. In the future, we will optimize the network for the 

pseudo-RGB images.   

 
 

Figure 4. Illustration of classification performance for five different patients (one per column): Pseudo-RGB images (1st row) with the 

ground truth of tumor (white contour), histology ground truth (2nd row), classification probability map using HSI (3rd row), classification 

probability map using pseudo-RGB (4th row), and predicted label generated from HSI probability map (5th row, red for tumor and green 

for normal). White arrows show the glare pixels that were misclassified as tumor in the pseudo-RGB images, and black arrows show 

the regions that had very few glare pixels and were misclassified as normal. In the histology images (2nd row), green contours indicate 

tumors, except the histology image in the second column, where the blue contour indicates dysplasia (normal) and the rest of the tissue 

is tumor.    
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4. DISCUSSION AND CONCLUSION 

In this study, a fully convolutional network model based on U-Net architecture was implemented and trained for tissue 

classification in hyperspectral images of ex vivo SCC surgical specimens. The model could provide pixel-level 

classification labels of the tumor and normal tissues with an average AUC of 0.88. The image classification for each 

specimen only takes 10 seconds. The whole process including image acquisition and processing can be done within several 

minutes, which is promising to provide fast tumor detection and high-precision margin assessment during the surgery. 

Compared to the time-consuming IPC, which requires the pathologist to carefully go over and manually annotate the whole 

slide, the proposed method only needs a pathologist to review the classification result for confirmation, which potentially 

saves much time during surgery. Although this work was based on a relatively small dataset and was evaluated using 

images of only two organs, it shows the ability of HSI to achieve accurate cancer detection. The comparison of HSI and 

RGB shows that the abundant spectral information within HSI can overcome certain limitations of human vision and 

provide insights into the tissue. In our future work, we will utilize a larger dataset of head and neck cancer specimens to 

train the network, and also include a testing group to better evaluate the performance of the network. In order to provide 

intraoperative image guidance, augmented reality-based systems will be developed, so that the classification results can 

be overlaid on the white-light image of the specimen and shown on a monitor or in a headset in real-time. The adoption 

and interpretation of HSI are easy for clinicians. Furthermore, since HSI is a non-contact, non-invasive, and label-free 

imaging method, it can be used any time on-demand during surgery. With the proposed classification method, HSI is 

promising to become an intraoperative tool. In conclusion, the robust experimental design and the preliminary testing 

results in this study illustrate the potential of our method to aid intraoperative surgical margin assessment and improve 

surgical outcomes. 
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