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The Contribution of Thoracic Radiation Dose
Volumes to Subsequent Development of
Cardiovascular Disease in Cancer Survivors
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Javed Butler, MD, MPH, FAHA; Natia Esiashvili, MD; Baowei Fei, PhD, EngD; Tommy Flynn, BSN;
James D. Dormer, MS; Eduard Schreibmann, PhD, DABR

Background: Although radiation therapy (RT) has been recognized for contributing to cardiovascular disease (CVD), it

is unknown whether specific doses received by cardiovascular tissues influence development. Objective: In this pilot

study, we examined the contribution of RT dose distribution on the development of CVD events in patients with cancer

within 5 years of RT.Methods:A retrospective case-controlled designwas usedmatching 28 cases receiving thoracic RT

who subsequently developed an adverse CVD event with 28 controls based upon age, gender, and cancer type. Dose

volume histograms of nongated computed tomography scans received during RT characterized the dose delivered to

the heart. Heart chambers were segmented using an atlas approach, and radiomics features for the segmentation as

well as planning dose in each chamber were tabulated for analysis. Result: No significant differences were observed in

the RT dose statistics between groups, preexisting CVD, nor significant differences of RT doses delivered to distinct

chambers of the heart. Cases were found to have greater CVD risk factors at the time of cancer diagnosis.

Morphological significant differences for perimeter on border (P = .043), equivalent spherical radius (P = .050), and

elongation (P = .038) were observed, with preexisting CVD having the highest values (ie, larger hearts). Conclusion:

Traditional CVD risk factors were more prevalent in the cases who developed CVD. No differences were observed in

doses of RT. Of note, we observed significant differences in heart morphology and mass in known diseased hearts on

the pretreatment scans. These new metrics may have implications for the measurement and quantification of CVD.
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Since 1896, radiation has been used to cure cancer, and
even today, more than 50% of patients with cancer

receive radiation therapy (RT).1 With RT, all vascular
structures within the radiation field are vulnerable
to injury due to endothelial dysfunction, progressiveCarolyn Miller Reilly, PhD, RN, CHFN-K, CNE, FAHA, FAAN
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microvascular damage, initiation of fibrosis, and persis-
tent inflammation.2

Risk of total cardiovascular disease (CVD) is increased
in cancer survivors who received thoracic radiotherapy.
Radiation therapy to the chest increases the risk of heart
disease based upon the cumulative dose of radiation, with
an estimated aggregate CVD incidence of 10% to 30%
within 5 to 10 years of treatment.3 Well recognized is a
further increase in the risk of CVD when combined with
cardiotoxic chemotherapeutic agents such as anthracyclines
in a similar dose-dependent fashion.4,5

These CVD complications encompass a range of del-
eterious effects on the heart, from subclinical histopath-
ological changes to overt clinical disease involving the
pericardium, myocardium, valves, conduction system,
and coronary arteries.6Within the pericardium, disrup-
tion ofmicrovascular endothelial cells with repeated ep-
isodes of ischemia leads to fibrosis and eventual collagen
deposits.7 Myocardial damage results from continual fi-
brotic remodeling of the myocardium and destruction of
myocardial capillaries by collagen deposition.8 The car-
diac valves experience RT-induced fibrotic thickening,
calcification, and valve retraction. Radiation therapy–
induced changes affect the conduction system from sev-
eral fronts including altering the baroreceptor reflex and
inducing autonomic dysfunction,9,10 and diffuse fibrosis
of the sinoatrial node and conduction pathways.11 Fi-
nally, within the coronary vessels, endothelial dysfunction
leads to persistent inflammation and progressive micro-
vascular damage,2 accelerating atherosclerosis, indepen-
dent of other CVD risk factors.

Although RT has long been recognized for its contri-
bution to CVD,4,5 it is unknown whether doses of radi-
ation received by specific cardiovascular tissues can
account for the development of CVD.We set out to ex-
tract and analyze a comprehensive set of features from
the radiation treatment plans including dose volume

histograms (DVHs) developed from the 3-dimensional
dose distribution, computed tomography (CT) image,
and anatomical structures. These were collected and ana-
lyzed using in-house custom software, providing detailed
radiation dose distribution and anatomical-spatial char-
acteristics such as overlap of heart with the high-dose
area. This allowed for the development of detailed
3-dimensional dose volume analyses using a heart atlas
(left ventricle, right ventricle, left atrium, right atrium,
pulmonary arteries/aorta/coronary arteries) in patients
who received RT for intrathoracic malignancies.12

The purpose of this pilot study was to examine the
contribution of RT dose distribution on the develop-
ment of any significant CVD events (defined as peri-
carditis, myocardial infarction, coronary artery disease,
valvular heart disease, heart rhythm disturbances, or
heart failure requiring medical care) in 56 patients with
cancer within 5 years of receiving RT to the thoracic
region using a retrospective case-controlled design. We
hypothesized that cases with an adverse CVD event
would be associated with greater dose volume amounts
of radiation, when controlling for typical CVD risk
factors.

Methods
Design

A retrospective case-controlled designwas used allowing
for the medical records and images of 28 patients receiv-
ing thoracic radiation who subsequently developed an
adverse CVD event to be matched with 28 controls
based on age, gender, and cancer type.

Sample

After obtaining institutional review board approval as
an exempt study, all patients receiving therapeutic tho-
racic radiation for a cancer between 2003 and 2008

FIGURE 1. Case and control selection and matching.
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and who subsequently received treatment for an ad-
verse CVD event within 5 years of completing their
RT (Figure 1) were identified as potential cases via
billing records. Possible controls were identified
through a similar second culling of persons receiving
chest RTwho met inclusion criteria but did not expe-
rience a subsequent adverse CVD event. Final selec-
tion as a case or control was based upon assurance
of stored baseline digital 3-dimensional CT (3D CT)–
based dose plans for dosimetry assessment. Medical re-
cord review was then undertaken for all clinical data
and calculated CVD risk in both groups. Cases were
matched to controls based upon age range, gender, and
type of cancer.

Inclusion criteria for both cases and controls included
age of 21 to 85 years and completion of chest RTwithin

the preceding 10 years. In the CVD case group, patients
experienced a readmission for an acute CVD event
within 5 years of the conclusion of RT. Specific CVD
events were isolated to those directly attributable to tho-
racic radiation and included pericarditis, myocardial in-
farction, coronary artery disease leading to myocardial
compromise or requiring revascularization, valvular
heart disease, heart rhythm disturbances, or heart fail-
ure. As provided in Table 1, we noted that most cases
developed coronary artery disease requiring hospitali-
zation and intervention, followed by heart failure,
whereas only a small percentage developed valvular
or rhythm disorders (primarily atrial fibrillation), and
none experienced pericarditis.

Exclusion criteria for both cohorts included death
attributed to cancer within the 5-year period. (Patients

TABLE 1 Demographic, Clinical, Cardiovascular Risk, and Cancer Treatment Variables

All
N = 56

Cases
N = 28

(A) Controls
N = 28

Test Cases/
Controls

(B) Cases
(No CVD)
N = 22

(C) Cases
(CVD History)

N = 6

Test
A/B/C

Mean (SD) /
Med [IQR] /

n (%)

Mean (SD) /
Med [IQR] /

n (%)

Mean (SD) /
Med [IQR] /

n (%)

Mean (SD) /
Med [IQR] /

n (%)

Mean (SD) /
Med [IQR] /

n (%)

Demographics
Age, y 62.1 (8.9) 62.3 (8.9) 61.9 (9.0) .882a 64.4 (7.5) 54.5 (10.1) .049f

Male 17 (30.4%) 8 (28.6%) 9 (32.1%) .771c 5 (22.7%) 3 (50.0%) .448g

Cancer type
Lung* 16 (28.6%) 9 (32.1%) 7 (25.0%) .584c 6 (27.3%) 3 (50.0%) .389g

Breast 34 (60.7%) 16 (57.1%) 18 (64.3%) 14 (63.6%) 2 (33.3%)
Thyroid* 1 (1.8%) 1 (3.6%) 0 (0%) 1 (4.5%) 0 (0%)
Metastatic* 2 (3.6%) 1 (3.6%) 1 (3.6%) 0 (0%) 1 (16.7%)
Other* 3 (5.4%) 1 (3.6%) 2 (7.1%) 1 (4.5%) 0 (0%)

African American 22 (39.3%) 13 (46.4%) 9 (32.1%) .274c 10 (45.5%) 3 (50.0%) .537g

CVD risk variables at cancer diagnosis
BMI 29.6 (7.2) 31.8 (7.9) 27.3 (5.7) .019b 32.5 (8.0) 29.4 (7.8) .040f

Systolic BP 132.0 (17.1) 137.1 (16.4) 126.9 (16.5) .025a 141.8 (11.5) 119.7 (20.9) .001f

Glucose level 108 [98, 124] 113 [97, 173] 105 [98, 114] .089d 109.5 [99, 154] 136.5 [91.5, 234.3] .209e

Framingham risk 19.9 (10.1) 23.4 (9.2) 16.3 (9.9) .008 a 24.0 (7.8) 21.0 (13.9) .033h

Family history CVD 20 (36.4%) 13 (48.1%) 7 (25.0%) .074c 10 (47.6%) 3 (50.0%) .202g

History of hypertension 38 (67.9%) 22 (78.6%) 16 (57.1%) .086c 18 (81.8%) 4 (66.7%) .166g

Smoker history 13 (23.2%) 9 (32.1%) 4 (14.3%) .114c 5 (22.7%) 4 (66.7%) .025g

Diabetes history 15 (26.8%) 13 (45.4%) 2 (7.1%) .001c 8 (36.4%) 5 (83.3%) <.001g

Cancer variables
Chemotherapy 32 (57.1%) 19 (67.9%) 13 (46.4%) .105c 15 (68.2%) 4 (66.7%) .290g

Hormone therapy (N = 46) 17 (37.8%) 5 (27.8%) 12 (44.4%) .259c 3 (23.1%) 2 (40.0%) .437g

Radiation duration (n = 53) 42 [35, 45.8] 42 [23.5, 45.5] 42 [35, 46] .640d 50 [30, 45] 44.5 [13, 51.9] .752e

Cancer stage 2 [1, 3] 3 [1.3, 3.8] 1 [1, 2.8] .002d 3 [1, 3.3] 3 [2.5, 4.0] .008e

0 3 (5.4%) 0 (0%) 3 (10.7%) 0 (0%) 0 (0%)
1 19 (33.9%) 7 (25.0%) 12 (42.9%) 6 (27.3%) 1 (16.7%)
2 8 (14.3%) 2 (7.1%) 6 (21.4%) 2 (9.1%) 0 (0%)
3 17 (30.4%) 12 (42.9%) 5 (17.9%) 9 (40.9%) 3 (50.0%)
4 9 (16.1%) 7 (25.0%) 2 (7.1%) 5 (22.7%) 2 (33.3%)

Primary endpoints (some patients developed more than 1 disease state)
Coronary artery disease 17 (53%)
Valvular disease 3 (9%)
Rhythm disturbances 2 (6%)
Heart failure 10 (31%)

* indicates categories combined for χ2 tests. a t Test pooled variance. b t Test unpooled variance. c χ2 Test. dMann-Whitney test. e Kruskal-Wallis test. f Analysis
of variance. g Fisher-Freeman-Halton exact test for R � C contingency tables. h Analysis of variance: Welch test.
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who died secondary to the CVD event in question were
included in this analysis.)

Sample Size
Wewere able to identify 28 case-controlmatches for a final
sample size of 56. With this sample size, we determined
that we could detect moderate-to-large effect sizes at
80% power and 5% level of significance: effect sizes of
r = 0.50 for correlation, d = 0.76 for t test, w = 0.37 for a
χ2 test for the difference of proportions between the 2
groups, and r2 = 0.36 for a regressionmodel with 3 tested
predictors adjusting for up to 3 covariates.

Variables and Measures

Data to measure study variables were abstracted from
the electronic medical record and digitally stored im-
ages acquired during the RT.

■ Demographic and clinical variables included age, gender,
ethnicity, family history, total cholesterol, high-density li-
poprotein cholesterol, smoking history, systolic blood pres-
sure, body mass index, hypertension history, type of
cancer, agents used and dosage, and total RT dosage.

■ These baseline data were used to compute the Framingham
Risk Score, a well-validated 10-year risk prediction instru-
ment for general CVD.13

■ Dependent CVD outcomes in cases were identified from
the electronic medical record and included clinical diagno-
sis of pericarditis, myocardial infarction, coronary artery
disease, valvular heart disease, heart rhythm disturbances,
or heart failure.

■ Table 2provides definitions and references for radio-oncology
variables used in this article.
a. For an in-depth analysis of cardiac toxicity, we used at-

las segmentation to automatically identify heart regions
of clinical interest.14–16 The atlas segmentation used ex-
pert labels identified by a radiation oncologist on a
high-resolution scan as input to an automated and con-
sistent segmentation procedure in radiotherapy. The ap-
proach relies on the existence of a mapping between a
reference image volume (called atlas) in which structures
of interest have been segmented and validated by an ex-
pert and the image to be segmented, called subject. A
point-to-point mapping obtained by a deformable im-
age registration is used tomatch the atlas with the image
to be segmented. Once the point-wise transformation
between the images was obtained, the same transforma-
tionwas applied on the structures defined on the atlas data
set to warp them onto the data set to be segmented. The

TABLE 2 Definitions and References for Radio-oncology Terminology

Term Definition

Dice coefficient A general coefficient describing the overlap between 2 shapes. In this article, it describes the overlap between
dose and a patient's organ. This normalized value is independent of the absolute volume and thus
normalized across patients with a value of zero when the critical organ is outside the isodose in question and a
value of 1 for a full overlap.21,22

Dose volume
histograms

A type of graph commonly used in radiotherapy to represent the total dose of radiation delivered inside a patient
organ. It is a cumulative histogram of the dose received in each voxel within the organ.12

Elongation 1–3 Similar to the one mentioned previously, measures to describe a geometrical shape as the ratio of the largest to
the smallest PCA coefficients. These measures are independent of an object's orientation in space.12

Equivalent spherical
radius

The radius of a sphere having the same volume as an organ's geometrical representation.12

Gray Gray is the standard unit to describe radiation doses in radiotherapy. It is defined as the absorption of 1 joule of
radiation energy per kilogram of matter.24

Gray-level run length
statistical features

Features describing an image's texture. Gray-level run length statistical features are extracted from a gray-level run
length matrix, which is generated by counting the intensities in neighborhood pixels.23

Isodose levels Similar to iso-levels on maps, these lines show regions of equal dose in radiotherapy treatment plans. These lines
are displayed on top of images of the patient's anatomy, as a way to graphically show where the dose is
deposited in a patient.

PCA0, PCA1, and
PCA2

Measures to describe a shape's appearance based on principal component analysis. An organ's geometrical
representation is first interpreted to determine the principal components of variations. PCA0 to PCA2
represent the coefficients of such an analysis, describing variations along a shape's principal axes.12

Perimeter on border Perimeter of an organ's geometrical representation.12

Perimeter, elongation,
and flatness

Measures describing how flat or elongated a shape is based on PCA (described previously).12

Pixels on border Number of pixels on the border of an organ's geometrical representation.12

Radiomics Radiomics is an analytic approach that first extracts large amounts of quantitative features from radiologic images
using data characterization algorithms followed by statistical analysis of features versus outcomes to identify
predictive measures of outcomes.23

Roundness A coefficient describing how “round” an organ segmentation is.12

Voxel Used in 3-dimensional computer graphics, a voxel represents a value on a regular grid in 3-dimensional space.
Comparable with pixels on a 2-dimensional bitmap, voxels themselves do not occupy a specific coordinate,
but their position is inferred based upon its position relative to other voxels.25

Wavelet features Wavelet features are first-order statistics after performing wavelet decomposition on the original image using
high-pass and low-pass filters.23

Abbreviation: PCA, principal component analysis.
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algorithm output a set of labels that are superimposed on
the data set to be segmented. As an automated clinically
validated process,17,18 the procedure not only significantly
reduces clinician time to segment structures of interest19

but also eliminates interobserver variability as the same
template is used for all patient segmentations.20

b. To investigate whether treatment plan features were asso-
ciated with adverse outcomes, we used in-house software
to generate a set of measures characterizing the dose de-
posited and its spatial relationship to each region at risk
as identified through the detailed heart atlas. Dose volume
histograms for each heart compartment were tabulated in
1-gray (Gy) increments (from 1 to 30 Gy) on the x-axis,
with the percentage of dose received (in absolute volume)
by the critical organ receiving that dose level plotted along
the y-axis. Because a DVH is a cumulative histogram of
how many voxels inside an organ receive a given dose
value, as the dose level increases, fewer voxels receive that
higher amount of radiation and the graph diminishes to-
ward zero. The last value is the maximum dose that is re-
ceived by only a point (voxel) in the heart.

c. The volume of each compartment in the high-dose area
was computed by theDice coefficient between increments
of isodose levels and a critical organ segmentation. Dice is
a general geometrical measure that characterizes the de-
gree of overlap between 2 blobs, which is independent
of the absolute volume and thus normalized across pa-
tients with an assigned value of zero when the critical or-
gan is outside the isodose in question and assigned a value
of 1 for a full overlap.21,22

d. Measures of dose inhomogeneity used concepts derived
from image analysis to detail the local deposition of dose
beyond the mean values used in clinical practice. The
dose deviation from the mean through the standard de-
viation, maximum value, andmeasures of dose inhomo-
geneity for each voxel in the heart were recorded.

All data were de-identified, entered into a database, and
maintained on a password-protected secure computer.
Datawere reviewed for completeness and data entry er-
rors, and variables were reviewed for assumptions of
normality. Nonparametric statistical tests were used
for variables that were skewed and did not meet normality
assumptions. Correlations (for 2 continuous measures),
t tests, and/or analysis of variance (ANOVA) (1 continu-
ous, 1 categorical with 2 or more categories) or the non-
parametric equivalents (Mann-Whitney or Kruskal-Wallis
tests) and χ2 tests were used. Multivariate ANOVA
(MANOVA) was performed for measures that made log-
ical sense to assess together with 3-dimensional shape
metrics, such as principal component analysis (PCA) 0,
1, and 2 and elongation 1, 2, and 3; post hoc ANOVAs
were further performed for eachmeasure individually un-
der the family-wise error rate for the overall MANOVA
model. However, other pairwise error rate corrections for
multiple statistical tests were not performed because the
goal of these analyseswasprimarilymeant tobedescriptive
and provide estimates from a pilot study in an area where
little statistics have been previously reported. Logistic re-
gression was used with the likelihood ratio variable se-
lection method to create the most parsimonious model
describing the relationships of DVHs, radiation dose

metrics, cardiovascular risk factors, and demographics
for the development of adverse CVD events. While pa-
tients were matched based upon age range, gender, and
type of cancer, an examination of other possible covari-
ates such as bodymass index was evaluated and adjusted
for in the final statistical model. Variables were considered
for inclusion in the final model if the univariate tests had
P ≤ .10. These variables considered were as follows: age,
bodymass index, glucose level, FraminghamRisk Score hy-
pertension history, smoking history, chemotherapy, cancer
stage, systolic blood pressure and radiation metrics (pixels
on border, perimeter on border, equivalent spherical ra-
dius, roundness, perimeter, elongation, flatness, PCA0,
PCA1, PCA2, elongation1, elongation2, elongation3)
(Table 2). All statistical analyses were performed with
SPSS v.23 at the 5% significance level.

Results
All case-to-control matching was appropriate for age at
cancer diagnosis (cases, 62.3 ± 8.9; controls, 61.9 ± 9.0;
P = .882), gender (P = .771), and most cancer types
(P = .584). For cancer type, all 16 breast cases matched
to 16 breast controls, 9 lung cases matched to 7 lung
controls and 2 metastasis controls, 1 metastatic case
matched to a metastatic control, and 1 thyroid and 1
other case matched to 2 other controls (Table 1).

Traditional Cardiovascular Disease Risk
Differences Pre Cancer Treatment

Significant differences in most CVD risk factors were
observed between cases and controls at the diagnosis
of cancer, as summarized in Table 1. Specifically, pa-
tients who developed CVD had multiple typical risk
factors at the time of their cancer diagnosis, whereas
the controls did not, including significantly higher body
mass index (P = .02), significantly higher systolic blood
pressure (P = .03), and significantly higher Framing-
ham Risk Score (P = .01) and rates of diabetes
(P = .01). Although the cases had a significantly later
stage of cancer (P = .01) and there may have been var-
iability in the exact type of chemotherapy agents, there
were no differences between cases and controls in re-
ceipt of chemotherapy or hormone agents.

Importantly, 6 of the 28 cases (21.4%) had a his-
tory of preexisting CVD (ie, previous myocardial in-
farction, history of heart failure, or treatment of
coronary artery disease with an interventional proce-
dure) compared with none of the 28 controls. Given
this difference, we also ran comparisons between
the controls, cases without preexisting CVD, and
cases with preexisting CVD. Cases with preexisting
CVD were significantly younger at the time of the
study by 10 years (P = .02), were more likely to smoke
(4/6, 66.7%, P = .03), and have diabetes (5/6, 83.3%,
P < .001). It is also noted that 83.3% (5/6) of the cases

Radiation Dose Volume and Cardiovascular Disease 5
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with preexisting CVD had a cancer stage of 3 or 4
compared with 63.6% of the cases without preexisting
CVD and only 25% of the controls (P = .01) (Table 1).
The cardiovascular outcome precipitating inclusion
as a CVD case was ischemic coronary artery disease
for 4 of the patients and heart failure with reduced
ejection fraction secondary to hypertension for the
other 2 patients. Notably, the average time from radia-
tion treatment to the subsequent CVD event averaged
41.33 months for these 6 patients, whereas the other
22 cases experienced an event much earlier at an aver-
age of 29 months.

Dose Volume Statistics

Therewere no significant differences between the radiation
doses for the cases and controls, for caseswith andwithout
preexistingCVDversus controls, nor significant differences
between the radiation doses delivered to distinct chambers
of the heart. Furthermore, although the percent average
DVH levels were higher for the cases than the controls
(Figure 2), nonewas statistically significantly different. This
is most pronounced at DVH 06 to 08, as seen in Figure 2.
Although not statistically significant, the DVH values of 1
to 30 Gy are all consistently higher for the cases without
preexistingCVD than for the controls, but the 6 cases with
preexisting CVD had the lowest values, as evidenced by
Figure 2, potentially because of larger heart profiles ob-
served in cases with preexisting CVD.

Cardiac Silhouette Pretreatment Differences

Using traditional measures and visualization, there were
no significant differences between cardiac shape mea-
sures between the matched case-control pairs on most
of the pretreatment scans. Using MANOVA for PCA0,
PCA1, and PCA2, there were no significant differences
between cases and controls (P = .20), norwhen consider-
ing elongation1, elongation2, and elongation3 (P = .21).
However, cases with a known history of CVD were ob-
served to have greater PCA2 and elongation3 (P < .15)

that approached significance (Table 3), stimulating fur-
ther statistical and computational exploration.

To ascertain whether this morphological difference
was due to possible structural changes from preexisting
CVD, we then evaluated these cases individually com-
pared with those cases without preexisting CVD, ob-
serving significant differences for perimeter on border
(P = .04), equivalent spherical radius (P = .05), and
elongation (P = .04), with the cases with preexisting
CVD having the highest values (ie, larger hearts). Using
MANOVA for PCA0, PCA1, and PCA2, there was a
borderline significant difference between controls, and
cases with and without preexisting CVD (P = .07), with
significant post hoc ANOVA differences specifically for
PCA0 (P = .04) and PCA2 (P = .05). Similarly, border-
line significant differences were seen between controls
and caseswith andwithout preexistingCVDwhen consid-
ering elongation1, elongation2, and elongation3 (P = .08),
with specific significant post hoc ANOVA differences
for elongation1 (P = .04) and elongation3 (P = .04).
In both the PCA0 to PCA2 and elongation1 to elonga-
tion3measures, the cases with preexisting CVDhad the
largest dimensional measurements.

Radiomics

Given these baseline differences between specific aspects
of the cardiac silhouette, we sought further analysis
and confirmation of these differences using radiomics.
Radiomics is an analytic approach that extracts large
amounts of quantitative features from radiologic images
using data characterization algorithms. In this work, we
focus on 2 groups of radiomic features: first-order wave-
let features and gray level run length (GLRL) statistical
features.23 Wavelet features are first-order statistics after
performing wavelet decomposition on the original im-
age using high-pass and low-pass filters. Gray-level
run-length statistical features are extracted from aGLRL
matrix, which is generated by counting the number of
consecutive identical pixels. We compared the difference

FIGURE 2. Dose volume histograms.
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between the control patients, cases with preexisting CVD,
and cases without CVD. In addition, cases with andwith-
out preexisting CVD were compared with each other. As
shown in Figure 3, the wavelet and GLRL features were
significantly different between the controls, cases with
preexisting CVD, and cases without preexisting CVD.
Further analysis on a large patient population will help
determine the clinical value of these features in possibly
identifying patients with preexisting CVD and those at
risk for developing such.

Risk Modeling

Originally, we hypothesized that cases with an adverse
CVD event would have received greater dose volume

amounts of radiation and not have a greater number
of CVD risk factors; only the opposite was observed.
The cases all had significantly greater typical CVD risk
factors upon cancer diagnoses and did not receive any
greater or differing amounts of thoracic radiation. A lo-
gistic regression model (Table 4) was developed using
the identified risk factors for the development of CVD
with forward variable selection likelihood ratio methods
used to choose the best set of variables. When modeling
the cases (bothwith andwithout preexistingCVD) versus
the controls, the resulting model retained cancer stage
and body mass index, with no other demographic and
clinical risk factors or radiation parameters (dose,
DVH, or shape) entering the model. The coefficients

TABLE 3 Radiation Shape Metrics Between All Cases With and Without Preexisting Cardiovascular
Disease and Controls

Mean SD Min Max

Percentiles ANOVA

25th Median 75th P

Pixels on border 0 control 1.32 0.11 1.06 1.60 1.27 1.30 1.36 .557
1 case - no CVD 1.35 0.11 1.17 1.58 1.27 1.35 1.42
2 case - CVD 1.37 0.11 1.22 1.50 1.27 1.38 1.46

Perimeter on
border

0 control 33 772.24 5239.20 19 912.30 43 072.20 30 025.13 33 735.15 37 557.70 .043
1 case - no CVD 33 491.79 6878.34 22 788.20 51 266.70 28 319.98 33 896.15 35 740.58
2 case - CVD 40 422.82 6683.42 32 389.80 52 065.80 35 709.98 39 516.20 44 690.60

Equivalent
spherical
radius

0 control 51.68 4.14 39.81 58.55 48.88 51.81 54.67 .050
1 case - no CVD 51.38 5.20 42.58 63.87 47.47 51.94 53.33
2 case - CVD 56.56 4.60 50.77 64.37 53.29 56.06 59.57

Roundness 0 control 1.37 0.16 1.16 1.85 1.26 1.36 1.44 .344
1 case - no CVD 1.43 0.15 1.15 1.75 1.31 1.42 1.54
2 case - CVD 1.34 0.13 1.18 1.54 1.23 1.33 1.44

Perimeter 0 control 46 744.15 7822.08 23 629.40 61 113.20 43 774.08 47 050.00 52 036.03 .287
1 case - no CVD 48 519.22 13 528.27 30 866.20 89 732.70 39 200.48 46 204.00 53 252.75
2 case - CVD 54 288.42 8755.27 40 586.20 66 868.90 47 790.25 55 010.30 60 264.63

Elongation 0 control 588 760.36 133 254.80 264 214.00 840 561.00 489 254.00 582 637.00 684 431.25 .038
1 case - no CVD 584 897.00 183 597.80 323 474.00 1 091 510.00 448 138.50 586 823.50 635 430.75
2 case - CVD 770 643.00 194 485.46 548 134.00 1 117 130.00 635 231.50 739 118.50 891 352.25

Flatness 0 control 0.73 0.08 0.59 0.86 0.67 0.73 0.78 .253
1 case - no CVD 0.70 0.06 0.57 0.83 0.66 0.71 0.74
2 case - CVD 0.75 0.06 0.65 0.80 0.69 0.77 0.79

MANOVA (PCA0, PCA1, PCA2); F6,104 = 1.990, P = .074
PCA0 0 control 310.05 70.97 169.49 447.10 258.22 308.76 360.15 .039

1 case - no CVD 285.08 65.75 165.31 444.18 249.89 270.38 315.08
2 case - CVD 368.66 77.96 284.38 487.03 296.23 359.89 437.19

PCA1 0 control 573.20 112.75 302.40 866.36 494.52 586.76 636.02 .310
1 case - no CVD 572.24 127.90 361.62 836.92 485.26 552.68 652.62
2 case - CVD 653.48 130.49 510.83 844.36 563.28 600.31 799.34

PCA2 0 control 990.44 154.55 603.88 1410.72 878.55 992.43 1073.47 .048
1 case - no CVD 1038.41 238.70 610.66 1700.69 842.02 1025.76 1135.22
2 case - CVD 1215.42 212.03 952.68 1520.13 1014.24 1202.53 1414.97

MANOVA (Elongation1, Elongation2, Elongation3); F6,104 = 1.969, P = .077
Elongation1 0 control 76.90 9.07 57.03 93.46 70.42 77.39 83.28 .041

1 case - no CVD 73.84 8.45 56.31 91.98 69.47 72.55 78.37
2 case - CVD 84.34 8.88 74.26 97.16 75.86 83.70 92.39

Elongation2 0 control 104.70 10.50 76.58 128.48 97.43 106.49 111.33 .281
1 case - no CVD 104.64 11.64 83.43 127.56 96.96 103.49 112.57
2 case - CVD 112.34 11.03 99.52 127.93 104.91 108.07 124.80

Elongation3 0 control 137.89 10.80 108.22 163.65 130.81 138.61 144.55 .042
1 case - no CVD 140.93 15.85 108.42 179.99 127.24 140.13 148.06
2 case - CVD 153.33 13.21 136.67 171.65 140.40 153.04 165.86

Abbreviations: ANOVA = analysis of variance; CVD = cardiovascular disease;MANOVA=multivariate analysis of variance; Max =maximum;Min =minimum.
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FIGURE 3. Case and Control Selection and Matching.

TABLE 4 Logistic Regression Models for Cardiovascular Disease Events After Cancer Treatment

Cases vs Controls (n = 55, 1 Subject Missing Glucose)

B SEB Wald df P OR

95% CI for OR

Lower Upper

Step 1a Cancer stage 0.737 0.260 8.017 1 .005 2.089 1.255 3.479
Constant −1.578 0.640 6.077 1 .014 0.206

Step 2b BMI 0.120 0.049 5.952 1 .015 1.128 1.024 1.242
Cancer stage 0.834 0.283 8.655 1 .003 2.302 1.321 4.013
Constant −5.322 1.737 9.381 1 .002 0.005

a Variable(s) entered on step 1: cancer stage
b Variable(s) entered on step 2: BMI
Final model: χ2(df = 2) = 16.581, P < .001

−2LL = 59.647, Nagelkerke R2 = 0.347
72.7% overall correct classification

Controls vs Cases Without CVD (n = 49, 6 Cases With CVD Removed)

B SEB Wald df P OR

95% CI for OR

Lower Upper

Step 1a SBP (in 10-point units) 0.839 0.284 8.767 1 .003 2.315 1.328 4.036
Constant −11.484 3.847 8.911 1 .003 0.000

Step 2b Cancer stage 0.685 0.291 5.562 1 .018 1.984 1.123 3.507
SBP (in 10-point units) 0.916 0.328 7.791 1 .005 2.500 1.314 4.759

Constant −13.986 4.620 9.165 1 .002 0.000
Step 3c BMI 0.113 0.061 3.423 1 .064 1.120 0.993 1.263

Cancer stage 0.791 0.323 6.001 1 .014 2.206 1.171 4.154
SBP (in 10-point units) 0.826 0.328 6.355 1 .012 2.284 1.202 4.341

Constant −16.431 5.082 10.454 1 .001 0.000
a Variable(s) entered on step 1: systolic blood pressure (in 10-point units)
b Variable(s) entered on step 2: cancer stage
c Variable(s) entered on step 3: BMI
Final model: χ2(df = 3) = 23.695, P < .001
−2LL = 43.723, Nagelkerke R2 = 0.513
77.6% overall correct classification

Abbreviations: BMI = bodymass index; CI = confidence interval; CVD = cardiovascular disease; df = degrees of freedom; OR = odds ratio; SBP = systolic blood
pressure; SE = standard error.
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revealed that, for every 1-point increase in body mass
index, the odds of developing CVD after cancer treat-
ment was 1.13 times higher and every increase in cancer
stage increased by 2.3 times the odds of developing CVD
(Table 4, top). An additional model was run removing
the 6 cases with preexisting CVD, and this model
similarly retained body mass index, cancer stage, and
systolic blood pressure (Table 4, bottom).

Discussion
Our findings were quite intriguing, negating our hypoth-
esis that the early development ofCVD in the 5 years after
cancer treatment would be associated with the RT dose
distribution. In fact, no relationship between RT dose as
calculated by DVH to areas of the heart was observed.
Previously identified risk factors for CVDwere associated
with the development of CVD in our patients with can-
cer, with specific factors contributing the greatest risk
including elevated body mass index and elevated sys-
tolic blood pressure. Interestingly, we observed that
the greater stage of cancer at diagnosis, perhaps
reflecting later time of diagnosis, was also associated
with subsequent development of CVD after treatment.

One of the more confounding elements of this anal-
ysis was the observation that persons with preexisting
CVD had morphological differences in their hearts on
the baseline CT. These measures have not been previ-
ously described in detail, and no norms for these mea-
sures have been previously published. We propose
that the mean values listed in Table 3 may serve as ref-
erence norms for persons at risk for the development of
CVD, those without risk, and those with known CVD.
Clearly, this requires subsequent study and evaluation
because this was a post hoc finding of this small pilot
study, undertaken only to explain the variability we
observed.

This finding may hold clinical relevance in that
we observed the DVHs of doses of radiation deliv-
ered to those with preexisting CVD were smaller.

This may reflect not taking into consideration the
greater mass and dimensions of a diseased heart when
calculating the maximal safe dosage that should be de-
livered. On the basis of the preliminary results of the
radiomics analysis, some features may be used to
identify patients at risk for CVD before and after
RT. A study with more comprehensive analyses of
a large patient population is warranted in our future
research.

Limitations

Limitations of this retrospective chart review include
the following:

1. The dose deposition in this study was computed using a
standard 3D CT data set, in accordance to current clinical
practice. However, these data sets do not capture cardiac
and thoracic motion that may interfere with the dose deliv-
ery. Further metrics such as the distance between each
chamber and beam should be explored in the future.

2. Because the goal of these analyses was primarily meant to
be descriptive and provide estimates from a pilot study in
an area where little quantification has been previously re-
ported, no pairwise error rate corrections for multiple sta-
tistical tests were performed. The feature analysis is based
on a limited number of patients, and a large study will help
determine the clinical value of the measurements for iden-
tifying patients at risk.

3. A third limitation for this pilot is the fact that storing of
baseline digital 3D-CT–based dose plans from which the
computed radiologic and radiomic metrics were derived
is a relatively new process. No files were available before
2003, limiting the number of patients who could have been
accessed. As radiation-induced cardiovascular complications
are a relatively later complication, we were unable to identify
CVD events past 5 years and closer to the expected 10 years
described in the literature. Thus, the CVD events described
may not be a result of or hastened by RT.

4. Finally, retrospective studies are hindered by incomplete
medical records, such as missing (or unmeasured) cholesterol
levels, weights, and inability to capture CVD events that may
have occurred but were treated at another facility.

Conclusions
We found that the biggest difference between the cases
of patients who developed CVD versus the controls
who did not were traditional CVD risk factors at can-
cer diagnosis. No differences were observed in the radi-
ation treatment. Of note, however, were differences
found on the pretreatment imaging scans, which sug-
gest differences in heart morphology and mass between
known diseased hearts and those without disease. No
previous work has quantified reference values for these
measures, and this small pilot may serve to stimulate
further research into the clinical and research implica-
tions of such a measurement.

Certainly, these findings support that a comprehen-
sive assessment for traditional CVD risk factors com-
bined with cardiac risk counseling may be warranted

What’s New and Important?

▪ We observed that the development of CVD in the 5
years after cancer treatment was not associated with
the RT dose distribution.

▪ Traditional CVD risk factors of elevated body mass index
and elevated systolic blood pressure, along with
advanced cancer stage, were correlated with the
development of CVD within 5 years of RT.

▪ Differences in heart morphology and mass between
known diseased hearts and those without disease were
observed on baseline CT scans. No previous work has
quantified reference values for these measures, and this
small pilot may serve to stimulate further research into
the clinical and research implications of such a
measurement.
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for persons with thoracic cancers. It also suggests that
baseline CT measurement of the heart and assessment
of DVH of radiation delivered may be useful in maxi-
mizing the safe delivered dosage.
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