
Research Article Vol. 13, No. 3 / 1 Mar 2022 / Biomedical Optics Express 1224

Band selection for oxygenation estimation with
multispectral/hyperspectral imaging

LEONARDO AYALA,1,7,9,10 FABIAN ISENSEE,2,6,9 SEBASTIAN J.
WIRKERT,1 ANANT S. VEMURI,1 KLAUS H. MAIER-HEIN,2,7,8

BAOWEI FEI,3,4,5 AND LENA MAIER-HEIN1,7,8,11

1Division of Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ),
Heidelberg, Germany
2Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg,
Germany
3Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080-4551, USA
4Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
75001, USA
5Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75001,
USA
6Applied Computer Vision Lab, Helmholtz Imaging, Dallas, Texas 75001, USA
7Medical Faculty, Heidelberg University, Heidelberg, Germany
8Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
9Authors contributed equally
10l.menjivar@dkfz-heidelberg.de
11l.maier-hein@dkfz-heidelberg.de

Abstract: Multispectral imaging provides valuable information on tissue composition such
as hemoglobin oxygen saturation. However, the real-time application of this technique in
interventional medicine can be challenging due to the long acquisition times needed for large
amounts of hyperspectral data with hundreds of bands. While this challenge can partially be
addressed by choosing a discriminative subset of bands, the band selection methods proposed to
date are mainly restricted by the availability of often hard to obtain reference measurements. We
address this bottleneck with a new approach to band selection that leverages highly accurate Monte
Carlo (MC) simulations. We hypothesize that a so chosen small subset of bands can reproduce or
even improve upon the results of a quasi continuous spectral measurement. We further investigate
whether novel domain adaptation techniques can address the inevitable domain shift stemming
from the use of simulations. Initial results based on in silico and in vivo experiments suggest
that 10-20 bands are sufficient to closely reproduce results from spectral measurements with
101 bands in the 500-700 nm range. The investigated domain adaptation technique, which only
requires unlabeled in vivo measurements, yielded better results than the pure in silico band
selection method. Overall, our method could guide development of fast multispectral imaging
systems suited for interventional use without relying on complex hardware setups or manually
labeled data.

© 2022 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Nomenclature

r(λ) Simulated tissue reflectance

rk Simulated reflectance adapted to camera system band k

(Ik)(i,j) Reflectance measurement at image pixel (i, j) and camera band k

Xg Generic tissue reflectance simulations
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Xc Colon tissue reflectance simulation

Xac Tissue reflectance simulations selected from generic tissue Xg to resemble colon tissue
reflectance Xc

Xam Tissue reflectance simulations selected from generic tissue Xg to resemble in vivo mouse
tissue

rnn Nearest neighbour simulated reflectance to measured reflectance

1. Introduction

Multispectral and hyperspectral imaging (MSI/HSI) could be useful for many applications in
surgery, including tumor detection and perfusion monitoring [1–4]. Acquisition of many spectral
bands, however, leads to long imaging times and/or low resolution, hampering widespread
adoption of the technique. To overcome this issue, current research focuses on reducing the
number of recorded bands. Yet, the methods proposed are not capable of considering both the
target domain (e.g. liver surgery) and the specific task (e.g. oxygenation or blood volume fraction
monitoring) when selecting bands [5,6].

In this paper, we propose a method that can provide task-specific and target domain-specific band
selection. The generic applicability of our approach is achieved with highly generic Monte Carlo
(MC) tissue simulations that aim to capture a large range of optical tissue parameters potentially
observed during surgical interventions. The adaptation of the model to a specific clinical
application is based on label-free in vivo hyperspectral recordings using a published approach
to multispectral domain adaptation [7]. The bands are selected based on their performance to
estimate task-specific physiological parameters.

In Section 2 we give a detailed overview of the current state-of-the-art. In Section 3 we
describe the method outlined above in more detail. Furthermore, we present in Section 4 the
validation of the method in silico and with in vivo data from [8]. We finalize the manuscript by
including a discussion of the findings in Section 5.

2. State-of-the-art in multispectral band selection

A large body of work in band selection is available in the fields of remote sensing [9–13], food
safety [6] and histopathology [14]. This state-of-the-art overview will be restricted to algorithms
related to interventional imaging, as summarized in Table 1.

Table 1. Overview of relevant band selection methods. Selected bands represent the optimal
number of bands reported by the authors. Our proposed method suggests a subset of 10 out of 101

bands for the in-silico oxygenation experiments, but can be applied to a wide range of tasks.

Author Modality label-free Method Data Application selected bands

Asfour [16] HSI yes wrapper ex vivo tissue visualization 4/151

Gu [17] MSI yes filter in vivo tissue visualization 6/16

Han [18] HSI no filter in vivo cancer localization 5/28

Marois [19] MSI yes wrapper in silico functional imaging 6

Nouri [20,21] HSI yes filter in vivo tissue visualization 3/141

Preece [22] MSI yes wrapper in silico functional imaging 3

Proposed HSI yes wrapper in vivo functional imaging 10/101

Wirkert [23] MSI yes filter in vivo functional imaging 8/20

Wood [5] MSI no wrapper ex vivo cancer localization 3/16
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Band selection is closely linked to variable/feature selection, in which algorithms can be
grouped roughly in filter, wrapper and embedded methods [15]. Filter methods determine the
best features as an independent preprocessing step, which is unaware of the target task (e.g.
oxygenation estimation). Wrapper methods use the downstream processing pipeline to search
for feature combinations that maximize the target performance metric for a given task (e.g.
accuracy of tumor detection). Finally, embedded methods are incorporated into the training
process of a machine learning algorithm, where feature selection becomes part of the model
construction. While filter methods can rely on unsupervised correlation analysis, wrapper and
embedded methods usually need labeled training data. Note that band selection is different from
dimensionality reduction methods such as principal component analysis (PCA), which reduce
the dimensionality by finding a subset composed of combinations of bands/features. This does
not reduce imaging time, since all bands first have to be recorded to compute the subset found by
PCA.

State-of-the-art methods shown in Table 1 can be classified into three categories depending
on the task being addressed: a) Cancer localization, b) tissue visualization and c) functional
imaging.

2.1. Cancer localization

Contributions in the area of cancer localization focus on selecting bands that maximize the
performance of a classifier. Some of the most prominent contributions include the work of Wood
et al. [5], who selected the bands which maximize the Area Under the Curve (AUC) of a Naïve
Bayesian classifier’s Receiver Operating Characteristic (ROC). More specifically, they used a
greedy algorithm to remove the bands which least contribute to the AUC while featuring a low
AUC if evaluated alone. The algorithm was evaluated on phantoms and stained lung cancer
biopsies, and the authors concluded that the use of three wavelengths provides essentially as
much information as the use of all sixteen.

Another contribution in this area focuses on gastric tumor localization. Han et al. [18] selected
bands which maximized the symmetric class-conditional Kullback-Leibler (KL) divergence
between disease and normal tissue reflectance spectra. A suboptimal, greedy search algorithm
[6] was used for this purpose because the possible number of band subsets grows exponentially
with the number of bands. This algorithm iteratively adds bands to a selection set based on the
largest incremental increase of the KL measure. The algorithm was evaluated on 12 patients and
a total of 21 colorectal tumors, and the authors concluded that 5 out of 28 bands are useful for
outlining tissue disease regions.

2.2. Tissue visualization

Several approaches address the problem of selecting the bands that improve the contrast between
normal and abnormal tissue. Among these, Gu et al. [17] selected three bands to discriminate
gastric abnormalities from benign tissue. They aimed to replace RGB images with the selected
bands. Their algorithm first selects the band with the highest variance in the visible range from
a set of 27 bands. The algorithm then adds subsequent bands iteratively with the criterion of
minimizing mutual information between the current set of bands and the previous selection. The
set of bands was optimized using 29 images from 12 patients with gastric abnormalities. The
authors concluded that 3 selected bands increase contrast compared to RGB images.

In a similar approach, Nouri et al. [20,21] inspected a number of unsupervised, thus label-free,
band selection algorithms. The algorithms, originating from the remote sensing community, were
evaluated within the context of hyperspectral ureter surgery. Instead of identifying bands which
separate a certain class, the authors aimed to identify three bands for better visualization (instead
of RGB) to present to the surgeon. They evaluated the competing algorithms by several contrast
and entropy metrics and assessed how different sets of bands can differentiate structures such as
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the ureter and adipose tissue. They found that the three best wavelengths to discriminate ureter
tissue are situated in the near infrared region and that the Sheffield Index preserves a maximum
of information.

In another work, Saiko et al. [24] studied the optimal number of bands to increase the contrast
of tissue structures. They linked the image contrast ratio with optical tissue parameters based
on the two-flux Kubelka-Munk model. They reported that bands around 550nm maximize
the contrast. Furthermore, Asfour et al. [16] investigated the optimal bands to improve the
visualization of atrial ablation lesions. They evaluated the performance of their algorithm in
subsets of 2, 3 and 4 bands based on supersets containing 151 and 31 equidistant bands in the
wavelength range between 420nm and 720nm. The authors concluded that 4 bands can be used
to enhance the contrast of ablated atrial tissue.

2.3. Functional imaging

Functional imaging methods in the medical field are techniques used to assess the state of
metabolism, blood flow, chemical composition, etc. either spatially or temporally within organs.
In this context, band selection methods aim to select a subset of bands while maintaining good
performance in at least one of such tasks. The method proposed by Wirkert et al. [23] selects
bands in a completely unsupervised manner by maximizing the differential entropy contained
in the selected subset of bands. More specifically, the algorithm selects the subset of bands
with the highest determinant of the bands’ covariance matrix. Assuming an underlying normal
distribution, this determinant is proportional to the differential entropy, and thus also to the
information contained in the subset of bands. The authors tested the method in an in vivo porcine
setting and concluded that a selection of 8 bands leads to blood oxygenation values close to the
baseline generated with 20 bands.

In contrast to this approach, Marois et al. [19] selected bands by analyzing the absorption matrix,
assuming oxygenation can be computed from the modified Beer-Lambert’s law and leveraging
a wavelength-dependent path length factor. They chose bands that maximize the product of
the singular values of the absorption matrix, arguing that this maximizes the orthogonality of
the fitted spectra. They then evaluated the quality of the chosen bands in an in silico setting
in the visible and infrared regions and reported the root mean squared error of the estimated
concentrations of different chromophores. Ultimately, they reported six optimal wavelengths for
estimating the concentration of water, lipids, oxygenated and deoxygenated hemoglobin.

Preece et al. [22] selected bands with a different idea. First, Kubelka-Munk light transport
theory-based simulations were created for assessing pigmentation of human skin. After adapting
these simulations to a set of virtual filters, a genetic algorithm was employed to find the best subset
for estimating papillary dermis thickness and blood/melanin content. The authors ensured that
the bands could invert the parameters uniquely by differential-geometric reasoning. Incorporation
of ground truth from simulations allowed them to circumvent problems related to references
from real data as mentioned in [8]. The authors concluded that three bands selected according
to their method lead to better results than RGB, but that RGB leads to reasonable results in the
investigated context.

2.3.1. Novelty of our contribution

Our method differs from previous work in several key aspects. The methods proposed by Wood,
Han and Nouri [5,18,20] require labeled data, e.g. according to a malignancy classification; in
contrast, we leverage unlabeled in vivo data. The filter methods developed by Nouri, Gu and
Wirkert [17,21,25] optimize band selection based on the maximization of a non-specific measure
such as amount of information, while we developed a method that can be adapted to specific tasks.
The approach by Preece et. al. [22] requires specific knowledge about the tissue composition and
can not be adapted to real tissue images, which we overcome by employing domain adaptation
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techniques. Furthermore, while the aforementioned work relied entirely on simulations, we also
evaluate band selection in an in vivo context, ensuring that both simulations and band selection
results are closer to a real surgical scenario.

3. Method

The proposed method chooses bands that optimize a performance criterion with respect to a
specific task (e.g. oxygenation monitoring) and domain (e.g. colonoscopy) without the need for
annotated reference measurements. At the core of the method is a simulated generic data set with
ground truth knowledge of optical and functional parameters (e.g. oxygenation, Sec. 3.1). This
dataset is leveraged by the proposed domain adaptation technique (Sec. 3.2) and thus serves as
foundation for the actual band selection algorithm (Sec. 3.3). Figure 1 summarizes the proposed
method.

Fig. 1. Overview of our approach. Generic simulations are adapted using unlabeled hyper-
spectral measurements from the target domain. The resulting domain-specific simulations
are the basis for the subsequent task-specific band selection.

3.1. Reference data generation

Generic simulated data is generated as described in [26], briefly revisited here. Tissue is assumed
to be composed of three infinitely wide slabs. Each of these slabs is defined by values of
blood volume fraction vhb, blood oxygen saturation s, reduced scattering coefficient at 500nm
amie, scattering power bmie, anisotropy g, refractive index n and layer thickness d. Values from
literature [27] are used to create MC simulations; these values include: Extinction coefficients
of hemoglobin ϵHb and deoxyhemoglobin ϵHbO2, absorption µa and scattering µs coefficients.
A Graphics Processing Unit (GPU) accelerated version [28] of the popular Monte Carlo Multi-
Layered (MCML) simulation framework [29] was chosen to generate spectral reflectances. Such
simulated spectral reflectances are here on referred as r(λ). The ranges from which the parameters
are uniformly sampled as well as general simulation parameters are summarized in Table 2.

The wavelength range [λmin − λmax] is large enough for adapting the simulations to cameras
operating in the visible and near infrared optical range. The simulated spectral reflectances r(λ)
are transformed to the reflectance camera measurement rk at band k according to Eq. (1).

rk =

∫ λmax
λmin

o(λ) · l(λ) · fk(λ) · r(λ) dλ∫ λmax
λmin

o(λ) · l(λ) · fk(λ) dλ
∈ [0, 1] (1)

Here, fk(λ) characterizes the kth optical filter response of the camera, l(λ) represents the relative
irradiance of the light source and o(λ) describes other parameters of the optical system such as
camera quantum efficiency and transmission of additional optical elements (optical lenses, light
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Table 2. The simulated ranges of physiological parameters, and their usage in the simulation
setup. Here vHb[%] represents the blood volume fraction, s the blood oxygen saturation, amie the
reduced scattering coefficient at 500nm, bmie the scattering power, g the tissue anisotropy, n the

refractive index and d the tissue thickness. All parameters have been uniformly sampled within the
specified range.

vHb[%] s[%] amie[cm−1] bmie[a.u.] g[a.u.] n[a.u.] d[cm]

layer 1: 0 − 30 0 − 100 5 − 50 0.3 − 3 0.80 − 0.95 1.33 − 1.54 0.002 − 0.2

layer 2: 0 − 30 0 − 100 5 − 50 0.3 − 3 0.80 − 0.95 1.33 − 1.54 0.002 − 0.2

layer 3: 0 − 30 0 − 100 5 − 50 0.3 − 3 0.80 − 0.95 1.33 − 1.54 0.002 − 0.2

µa(vHb, s,λ) = vhb(s · ϵHbO2(λ) + (1 − s) · ϵHb(λ)) · ln(10) · 150 g.L−1 · (6.45 × 104 g.mol−1)−1

µs(amie, b,λ) = amie
1−g (

λ
500 nm )−bmie

simulation framework: GPU-MCML [28], 106 photons per simulation

simulated samples: 5.5×105

sample wavelength range [λmin − λmax]: 300nm-1000nm, stepsize 2nm

guides, etc.). Multiplicative Gaussian noise is added to the simulated reflectances to account for
camera noise and inaccuracies arising from modelling tissue as homogeneous layered structures.
See Sec. 4.1 for more details on the specific camera parameters used for the data analysis.

3.2. Adapting to the target domain

The model from Sec. 3.1 describes a generic tissue, which encompasses virtually all tissue
types that have hemoglobin as main light absorber. However, for a given domain such as cancer
localization, many of the generated simulations might be irrelevant and thus bands selected based
on these simulations might be suboptimal. Domain adaptation techniques can ensure that the
simulations match the target domain more closely [30]. In this manuscript, kernel mean matching
(KMM) [7], a state-of-the-art domain adaptation technique, is used to automatically assign a
weight to each simulation according to how closely they mimic real measurements taken from
the target domain. KMM estimates the density rations between two probability density functions
β(x) = p(x)

p′(x) by minimizing their Maximum Mean Discrepancy (MMD) [31] in a Reproducing
Kernel Hilbert Space (RHKS) ϕ(x) : x −→ F .

MMD2(F , (β, p), p′) =
∥︁∥︁Ex∼p(x)[β(x)ϕ(x)] − Ex∼p′(x)[ϕ(x)]

∥︁∥︁2

In this particular application, p(x) can be replaced by the distribution of reflectance simulations
ri and p′(x) by the distribution of real measurements Ii. Thus, the problem of computing the
density ratios of these two distributions can be rewritten as follows. For a more complete
deduction of this expression, please refer to [32].

arg min
βi

∥︁∥︁∥︁∥︁∥︁1
n

n∑︂
i=1
βiϕ(ri) −

1
n′

n′∑︂
i=1
ϕ(Ii)

∥︁∥︁∥︁∥︁∥︁2

s.t. βi ∈ [0, B] and

|︁|︁|︁|︁|︁ n∑︂
i=1
βi − n

|︁|︁|︁|︁|︁ ≤ n
B
√

n
(2)

This objective function matches the empirical means of simulations ri and real data Ii in a
RHKS induced by the kernel K. We set this function to the Gaussian radial basis function kernel:
ϕ(ri, rj) = e−γ(∥ri−rj∥2)

2
. In simple terms, the target of KMM is to weight Gaussians associated

with each simulation to reproduce the distribution of the measurements as closely as possible.
The first boundary condition (βi ∈ [0, B]) limits the maximum influence of individual training
samples, the second condition ensures that the term 1

n
∑︁n

i=1 βiϕ(ri) is close to a probability
distribution [33]. Unfortunately, Eq. (2) cannot be minimized directly due to the possible infinite
dimension of ϕ. The random kitchen sinks method [34] finds an approximate representation of
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ϕ(ri) ≈ z(ri) by sampling from the Fourier transformation of a shift invariant kernel. This enables
solving the convex KMM objective function in its non-kernelized form using a standard optimizer.
Once the optimization has finished, the weights βi are used to sample with replacement from the
original simulated data set to establish a data set which more closely resembles real tissue.

3.3. Task-specific band selection

Band selection aims at reducing the number of bands while maintaining high performance on
a desired task. In this manuscript, the chosen task, unless otherwise specified, is oxygenation
estimation, and the metric employed is mean absolute error (MAE). The random forest-based
oxygenation estimation method developed by Wirkert et. al. [25] is used to map from the
reflectance spectrum to oxygenation values. This method uses MC simulations to learn this
mapping and was found to be more accurate than the conventional linear Beer-Lambert approaches.
In principle, our method is compatible with any feature selection or regression and classification
method. Note that for the sake of consistency with the feature selection literature, we use the term
feature rather than band in this section, but they are equivalent in the context of this work. In this
paper, several popular filter- as well as wrapper-based approaches are studied and compared.

In a supervised learning setting, filter methods estimate the "usefulness" of features by
computing a specific metric such as mutual information or conditional mutual information
between features and between features and targets. In contrast, wrapper methods use the
performance of a machine learning model to select the best features. Since feature selection is an
NP-hard problem, greedy step-wise optimization algorithms are often used to restrict the search
space that is explored with both filter and wrapper methods [35,36].

3.3.1. Wrapper feature selection

Here, sequential forward selection (SFS) and best first search (BFS) are used [35] as wrapper
feature selection methods. Both are greedy algorithms that construct feature subsets sequentially
by optimizing a fitness criterion. SFS iteratively adds single features to a given subset by keeping
the feature that most improves the fitness criterion. Features are added until the criterion has
not improved in the last three additions. BFS not only adds but also removes features from an
existing subset and widens the search space by keeping track of all explored subsets. If stuck in a
local minimum, BFS falls back to previously explored high-scoring feature sets and continues
the search from there. Wrapper methods are flexible in the sense that one can use any fitness
criterion to be optimized. In the experiments described in Sec. 4 we employ our target metric,
the MAE, as fitness criterion (Eq. (3)) and a random forest regressor as described in [25] for
oxygenation estimation in all experiments.

argmin
si⊂S

(lMAE(y, f (xsi ))) (3)

Here, S denotes the complete set of possible features, si are the selected features (a subset of
S), lMAE(yi, f (xsi )) is the MAE achieved with the subset si, features x and regressor f for the target
variable y (e.g. oxygenation). lMAE(yi, f (xsi )) is computed by running a threefold cross-validation
on the training data while using only the selected subset of features si. The final subset of features
(and thus feature set size) is selected by evaluating the obtained sets on a test dataset and selecting
the one with minimum MAE.

3.3.2. Filter feature selection

Several mutual information-based selection criteria are employed for filter feature selection:
Minimum Redundancy Maximum Relevance (mRMR) [37], Conditional Mutual Information
Maximization (CMIM) [38], Mutual Information based Feature Selection (MIFS) [39], Interaction
Capping (ICAP) [40], Conditional Infomax Feature Extraction (CIFE) [41] and Joint Mutual
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Information (JMI) [42]. Brown et al. [36] provide a thorough analysis of these criteria and
identify a unifying theoretical framework from which they can be derived. Although these
methods were originally developed for classification problems, they can be extended to the
context of regression, provided that a mutual information estimator can be defined. Such an
estimator must be able to compute the conditional mutual information between two feature
subsets even when the target is not categorical. For this purpose, Kraskov’s nearest neighbor
mutual information estimator [43] is used to compute the mutual information between subsets.
Furthermore, feature subsets are optimized by constructing them in a greedy step-wise manner as
described in [36]. Filter feature selection algorithms return the order with which features are
added to the subset but are incapable of returning the optimal number of features to be used. In
this work, the optimal number of features was not selected explicitly. We instead report the result
for all generated feature set sizes.

3.4. Data normalization

Distance and angle between the MSI camera and the tissue introduce multiplicative changes on
the intensity of the measured spectrum. Band normalization is performed to remove dependency
on these factors, which can typically not be controlled during an intervention. Recommendation
of [25] are followed to normalize each reflectance spectrum by dividing it by its mean, followed
by a negative logarithmic transformation (− log) and a further ℓ2 normalization. Given a spectral
image I ∈ RNx×Ny×Ns of spatial dimensions Nx × Ny and number of channels Ns, Ik ∈ RNx×Ny

represents one image channel k (k ∈ {1, . . . , Ns}) and (Ik)(i,j) ∈ R represents the intensity value
at the pixel position (i, j) (i ∈ {1, . . . , Nx}, j ∈ {1, . . . , Ny}). The normalized spectra Ī(i,j) can be
computed as follows:

(Ilog
k )(i,j) = − log

(︃
(Ik)(i,j)

(Ik)(i,j)/(
∑︁

k(Ik)(i,j))

)︃
Ī(i,j) =

∥︁∥︁∥︁Ilog
(i,j)

∥︁∥︁∥︁
2

The − log transformation and ℓ2 normalization are not strictly necessary from a theoretical
standpoint, but empirically improved results. In addition, the data needs to be re-normalized
whenever a different set of bands is used, because the normalization method works on a per-sample
basis and uses all the available bands for normalization. As a side effect, this theoretically allows
our approach to jointly optimize bands along with their normalization.

4. Experiments and results

Experiments were performed to assess the band selection results both in an in silico and an in vivo
setting. Sec. 4.1 describes the experimental setup with a specific focus on the parameters used to
configure the algorithms. The purpose of the in silico experiments was to assess the method in a
quantitative manner (Sec. 4.2). The in vivo experiments assessed how well oxygenation estimated
from many bands can be reproduced by bands selected with the proposed method (Sec. 4.3).

4.1. Experimental setup

To validate our method, generic MC reflectance simulations Xg were created from the model
described in Table 2. These generic simulations defined two disjoint sets: a training Xtrain

g
(450,000 simulations) and a test set Xtest

g (15,000 simulations). Bands were selected on a subset
of 15,000 simulations selected randomly from the training set. The selections were evaluated by
training on the entire training set and evaluating on the test set.

To mimic the camera used for the in vivo application, Eq. (1) was used to simulate multispectral
bands every 2nm from 500nm to 700nm, each band represented by a Gaussian transmissions
profile with a full width at half maximum (FWHM) of 20nm. Camera quantum efficiency and
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the optical system were assumed constant within the relatively narrow filter bands. Gaussian
multiplicative noise (5%) emulated the camera noise. The range of 500nm to 700nm was chosen
because the simulations and measurements (see sec. 4.2) did not match below 500nm and
above 700nm. Furthermore, when comparing the simulated data, presented in sec. 4.2, to the
measurements, a 14nm shift in the absorption spectrum was detected. To align simulations
and measurements, the measurements were shifted by 14nm. The in vivo measurements were
transformed to reflectance by dark and flatfield correction. They were further blurred with a
Gaussian kernel with a sigma of one pixel in the spatial domain to denoise the measurements.

Following the suggestions of Wirkert et al. [25], the random forest was set to use 10 trees,
a maximum depth of nine and a minimum number of samples per leaf of 10. As in [26], the
KMMs parameter B (see Eq. (2)) was set to 10, and the kernel function’s parameter γ was set to
the median pairwise Euclidean sample distance determined on the training data.

4.2. In silico validation

Purpose of the in silico experiments was to assess the different band selection techniques and the
proposed domain adaptation approach in a quantitative manner.

Influence of band selection methods Several popular filter and wrapper methods were
evaluated. Publicly available code for all feature selection methods used in this manuscript is
provided online at https://github.com/FabianIsensee/FeatureSelection. Results for these methods
on the oxygenation task are shown in Fig. 2(a). The selected bands for the best filter and best
wrapper method are shown in Fig. 2(b).

Fig. 2. (a) MAE of various band selection methods. Selected on the generic training set Xg
and evaluated on the test set Xtest

g . Wrapper methods (W) outperform filter methods (F). The
horizontal line represents the result when training and testing on all 101 bands. (b) The first
11 selected bands from the best wrapper (BFS) and the best filter method (mRMR) for the
oxygenation estimation task. This particular number of bands was chosen as this is where
the MAE achieved with BFS is lower than the baseline (101 bands).

A systematic robustness analysis, shown in Fig. 3(a) and performed with the ChallengeR
(https://github.com/wiesenfa/challengeR) tool developed by Wiesenfarth et. al. [44], shows that
the best method across different numbers of bands is BFS. Because wrapper methods performed
better than filter methods and BFS ranks in first place for all different numbers of bands, it was
selected as the standard band selection technique for the following experiments.

Influence of noise on necessary number of bands This experiment aimed to investigate how
many bands are needed and whether or not this number of bands is dependent on the expected
SNR of the multispectral system. The SNR in the simulations varied between 5 (very high noise)
and 1000 (virtually no noise). Figure 4(a) shows how the SNR and number of selected bands
influence the MAE. For noise levels of 5, 10, 20, 30, 40, 50, 1000 SNR, the minimum number of

https://github.com/FabianIsensee/FeatureSelection
https://github.com/wiesenfa/challengeR
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Fig. 3. a) Ranking stability of different band selection methods across different number
of bands (see Fig. 2(a)). Here the rank of a method (1: best to 5: worst) is based on the
MAE. Each method is color-coded, and the area of each blob at position (Ai, rank j) is
proportional to the relative frequency (Ai) each method achieved rank j for 1000 bootstrap
samples. The median rank of each algorithm is indicated by a black cross and 95% bootstrap
confidence intervals across bootstrap samples are indicated by black lines. b) Performance
of our proposed method when using different noise levels for selecting and applying bands.
The matrix shows how the MAE varies when selecting fifteen bands on one noise level and
training and testing these selected bands on another noise level.

Fig. 4. (a) MAE on varying noise levels and number of selected bands, the circles show
the minimum MAE achieved for each SNR. With 16 bands, performance for SNR=1000 is
close to the best result indicated by the dot. (b) The stripes indicate the center wavelengths
of bands for different noise levels. The number of bands shown here corresponds to the first
combination to be within a margin of 0.01 compared to the best achieved MAE (circles).
Hemoglobin extinction coefficients are plotted for reference.

bands to be within a 0.001 margin of the best MAE for the SNR level was 29, 24, 22, 22, 20,
20 and 15 respectively. The best MAE hereby refers to the minimum MAE achieved with the
band set identified throughout this experiment, not the 101 bands baseline. Figure 4(b) shows the
selected bands.

Sources of noise, such as camera noise and model uncertainties, can be difficult to quantify
or estimate in advance. We therefore investigated the effect of selecting bands with one noise
level and evaluating on another one. We chose the best set of fifteen bands with SNR levels of
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5, 10, 20, 30, 40, 50 and 1000 because at this threshold SNR=1000 was within 0.01 of its best
MAE. Evaluation was done using all combinations of bands and SNRs. Figure 3(b) shows how
these factors interplay. As can be seen in the figure, bands selected at one noise level will not
provide ideal results for another noise level. This is because high amounts of noise favor the
addition of neighboring and thus redundant bands earlier on in the band selection process to
make the regressor more robust, while low amounts of noise allow for earlier stratification into
other wavelength regions.

Influence of redundant information on band selection results The band selection results
showed that BFS picked bands in close proximity (e.g. 578nm and 576nm in Fig. 2(b)). This
suggests that there are few distinct places highly suited for oxygenation estimation and the
algorithm is adding redundancy and thereby increasing its robustness to noise by selecting
adjacent bands. To investigate this effect further, we designed an experiment which gives the
algorithm more freedom to build redundancy in the chosen bands. To this end, each band was
duplicated ten times for all wavelengths. Each duplicate was then augmented with additive
Gaussian noise (SNR 10). This corresponds to a maximum SNR of about 32 if all ten bands
of a given wavelength were selected. Figure 5(a) shows the MAE achieved with an increasing
number of selected bands; it can be seen that the baseline MAE (horizontal line) is reached with
approximately 20 bands when selecting bands with BFS. Figure 5(b) shows the first 40 bands
selected in this manner. This number of bands was chosen for illustrative purposes. The mean
number of selections per band was 3.1. The highest number of selections were performed for
center wavelengths of 576nm (7), 596nm (6) 598nm (5) and 578nm (5), where the number of
selections is given in parentheses.

Fig. 5. Redundant band experiment. Each band was copied 10 times, each with its own
noise applied to it, this allows BFS to select a band more than once. (a) MAE achieved
with an increasing number of selected bands by BFS (with repetition). The horizontal line
indicates the MAE achieved when using all original 101 bands, before duplication. (b) The
forty most relevant bands as selected by BFS in this experiment. The number of selections
for each band is color coded. Hemoglobin extinction coefficients are plotted for reference.

Influence of domain shift on band selection The influence of the target domain on the band
selection and the possibility to adapt to the target domain using the method presented in Sec. 3.2
are investigated in the following. For this, a separate set of colon simulations Xc with 15,000
simulated reflectances drawn from the tissue model specified in Table 3 was created. 10,000 of
these simulations were used to perform domain adaptation as described in Sec. 3.2 on Xtrain

g . The
remaining 5,000 simulations were used as a test set. To form a data set adapted to colon tissue
Xac, 15,000 simulations were sampled with replacement using Xtrain

g and the weights determined
by KMM.

Figure 6(a) shows how selection from domain-specific simulations compares to selection
from unadapted data using BFS for band selection. For each experiment we indicate what data
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Table 3. Parameter ranges for the colon tissue model and their usage in the simulation setup as
described in [25]. Here vHb[%] represents the blood volume fraction, s the blood oxygen saturation,
amie the reduced scattering coefficient at 500nm, bmie the scattering power, g the tissue anisotropy,

n the refractive index and d the tissue thickness.

vHb[%] s[%] amie[cm−1 ] bmie[a.u.] g[a.u.] n[a.u.] d[cm]

layer 1 : 0 − 10 0 − 100 8.7 − 29.1 1.289 0.80 − 0.95 1.36 0.06 − 0.11

layer 2 : 0 − 10 0 − 100 8.7 − 29.1 1.289 0.80 − 0.95 1.36 0.04 − 0.08

layer 3 : 0 − 10 0 − 100 8.7 − 29.1 1.289 0.80 − 0.95 1.38 0.04 − 0.06

µa(vHb, s,λ) = vHb(s · ϵHbO2(λ) + (1 − s) · ϵHb(λ)) · ln(10) · 150 g.L−1 · (6.45 × 104 g.mol−1)−1

µs(amie, b,λ) = amie
1−g (

λ
500 nm)−bmie

simulation framework: GPU-MCML [28], 106 photons per simulation

simulated samples: 2 × 104

sample wavelength range [λmin − λmax]: 450nm-720nm, stepsize 2nm

the bands were selected on (BS on) and what data was used for training the regressor (tr on).
Evaluation was always done on the test set of the target domain Xc. We show results using
general data Xg, domain adapted data Xac and target domain data Xc (train) as source domain.
Herewith, the results for Xg should be interpreted as a lower bound and the results for Xc are an
upper bound. Note that in real-world scenarios annotated data from the target domain is usually
not available, rendering band selection on Xc impossible. As can be seen in Fig. 6(a) (blue line),
domain adaptation can indeed close the domain gap to some extent. While band selection did
improve the MAE to below the respective baseline for Xg and Xc, a considerable improvement
was not observed for Xac. Across all numbers of selected bands, domain adaptation yielded better
results than just using Xg. The light blue line shows the MAE when selecting on Xg but training
on Xac. This result indicates that, at least for the present data set, features may not need to be
re-selected after domain adaptation. This is supported by the selected bands on each source
domain depicted in Fig. 6(b).

Fig. 6. (a) Comparison of bands selection (BS) using domain-specific Xac (dark blue)
and unadapted simulations Xg (orange). As an upper bound, the result of selecting on the
simulated colon target domain Xc (green) is shown. The light blue line shows the result of
selecting bands based on Xg but training a regressor with data from Xac. All experiments
were evaluated on the test set of the target domain (Xc). The horizontal lines are the results
for training and testing on all 101 bands of the respective training set (no band selection). (b)
The ten first bands selected for each of the different source domains. Hemoglobin extinction
coefficients are plotted for reference.
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4.3. In vivo validation

The in vivo validation investigates how well bands selected from the (domain-specific) simulations
can estimate oxygenation on real data. Images from [8] were taken for this evaluation. They
encompass 8 hyperspectral images of head and neck tumors in a mouse model, captured by
a Maestro (PerkinElmer Inc., Waltham, Massachusetts) imaging system. This system records
hyperspectral images from 450-900nm with a FWHM of 20nm. Green fluorescence protein
(GFP) was used to identify tumorous tissue. For more details on the imaging process and the
reference generation please refer to [8]. From the 8 mouse tumor images, five were used for
algorithm fine-tuning and three were reserved for the final validation of the band selection results.
For the following analysis, bands between 500-700nm were considered, as only in these ranges a
close match between simulations and measurements could be established.

Matching simulations and real measurements We investigated how the simulations fit to
the real mouse measurements for all pixels in the training images. For this purpose, the real
measurements I(i,j) at spatial location (i, j) and simulated reflectances Xg were normalized as
described in Sec. 3.4. This yielded the normalized real measurements Ī(i,j) and the set of
normalized simulated spectra X̄g. Furthermore, the nearest neighbor simulation r̄nn to each
normalized measurement Ī(i,j) was determined by choosing the simulated reflectance r̄i ∈ X̄g with

Fig. 7. Reconstructed RGB (a,b,c) and fit error (d,e,f) for three training images. The fit
error for each pixel is the smallest MSE compared to simulated data from Xg. (g,h,i) show
the best simulation fit for the green points in the images above. They were selected to show
a good (g), bad (h) and very bad (i) fit.
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the minimum mean squared error (MSE) to Ī(i,j), that is:

(r̄nn)(i,j) = argmin
r̄

(︄
1
Ns

Ns∑︂
k=1

((Īk)(i,j) − r̄k)
2

)︄
; r̄ ∈ X̄g

We refer to the MSE between r̄nn and measurements Ī(i,j) as fit error. The median fit error was
6.6 × 10−5. To provide the reader with an estimate of the distance between measurements and
simulations, we plot exemplary images in Fig. 7. To understand how the fit error varies within an
image, we report three of the training images as reconstructed RGB color images (reconstructed
from hyperspectral measurements) and as fit errors in Fig. 7. It can be seen that the regions of
the images with the biggest fit error correspond to regions around specular reflections, or dark
regions visible on the reconstructed RGB images.

Qualitative comparison of band selection methods The in silico methods evaluated the band
selection in a quantitative, although simulated environment. In this experiment we compared
selected methods in an in vivo setting. The guiding assumption was that the bands resulting from
the band selection algorithms should be able to reproduce (and maybe improve upon) the full 101
band oxygenation estimate.

We focused on BFS, the best performing wrapper method. Experiments in this section are
based on 15,000 domain adapted measurements as a training set Xtrain

am and another 15,000 domain
adapted measurements as a test set Xtest

am , both sampled from Xg using weights from our domain
adaptation approach. We selected bands on the training set, then trained a regressor on the
training data with the selected bands and finally evaluate the regressor on the test set. The results
for the band selection on domain-adapted in silico data are shown in Fig. 8. As can be seen in the
figure, the baseline MAE can be reproduced with 13 bands while the best MAE is achieved with
20 bands. Note that in this setup the band selection algorithm is agnostic to the real measurements
as it is presented only domain-specific generic simulations. This approach allows us to select
bands that are specific to some domain without having ground truth oxygenation values for the
measurements.

Final evaluation on test images In this final evaluation, we compared the BFS result using
the 20 selected bands from the previous section with the 101 band oxygenation result. For
this evaluation, three previously unused tumor images were used. See Fig. 9 for a side by side
comparison on the three images and violin plots of the tumor and non-tumor oxygenation results.

Fig. 8. Band selection results on domain-specific data Xtrain
am for the in vivo experiment.

Band selection was performed using BFS on the training set Xam and the MAE are reported
for the test set Xtest

am . The horizontal line indicates the MAE achieved with all 101 bands.
The best result was obtained with 20 bands. These bands are then used for the in vivo data.
Note that the results displayed in this figure are based on domain-adapted simulations only
and do not provide a performance estimate for the in vivo data.
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Fig. 9. Reconstructed RGB (a,b,c) of the test images. (d), (e), (f) show the oxygenation
estimate using all 101 bands. (g), (h), (i) show the oxygenation estimate using only 20 bands
selected with BFS. (j), (k), (l) show the violin plots, both for tumorous and benign regions.
Tumorous regions were identified via GFP and are indicated by the blue outline in the images.
The color bars on the right show the percentage of oxygenation.
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5. Discussion

The contributions of this paper can be summarized as follows. Firstly, we are - to our knowledge -
the first to investigate whether a small subset of bands, selected using highly accurate simulations,
can yield high-quality results on the clinically relevant task of oxygenation estimation. Secondly,
we proposed the first method to select bands depending on the domain under investigation
(here: head and neck tumor), without the need for (often unavailable) labeled in vivo data. The
approach relies on selecting bands from a large generic database of labeled in silico reflectances
generated with MC methods. Previously proposed domain adaptation techniques were employed
to select simulations which mimic the tissue of interest. Finally, we compared a large number of
state-of-the-art band selection techniques as part of our framework. In the following, the results
are discussed in light of the in silico and in vivo experiments.

In silico experiments The in silico experiments investigated several aspects of the band
selection algorithm in a controlled environment. The key findings were that (a) wrapper
outperform filter methods, (b) 10 bands give a performance comparable to 101 bands in this
setting, (c) selecting more bands can yield better than baseline MAE in the case of wrapper
methods, (d) the algorithm adds redundant information by choosing neighboring bands, (e)
different noise levels impact band selection results with higher noise levels favoring redundancy
early in the selection process, and (f) band selection is beneficial even when adding additional
complexity to the experimental pipeline by incorporating the proposed domain adaptation
technique.

Wrapper methods consistently outperformed filter methods in our experiments. This is
probably explained by being more “end-to-end” than the filter methods, which are agnostic
to the downstream regression pipeline (here a random forest regressor). When looking at the
selected bands, it can be noticed that the filter methods select bands more broadly across the
spectrum of possible wavelengths. In contrast, wrappers first pick bands in places with high
differences between oxygenated and deoxygenated hemoglobin while later adding redundancy
via neighboring bands. Adding redundant bands can be beneficial in the noise model used here
(see below). This benefit could however not be captured by the heuristics employed in the filter
methods. Filter methods typically penalize high mutual information between features in the
selected set, thus refusing to select neighboring bands.

Our choice of normalization method is a design choice that needs to be discussed. In this
work the band selection algorithms could influence the normalization because the nature of the
normalization method used here required a re-normalization of the data whenever a feature was
removed or added. To investigate the influence of the normalization method, we changed it to an
image quotient norm [45] (data not shown). With the image quotient norm, this re-normalization
step is unnecessary and therefore eliminates the possibility for the band selection algorithms
to jointly optimize the regressor and the normalization. In our in silico experiments, the
image quotient norm resulted in higher overall MAEs, the algorithms never surpassed the 101
baseline and a less pronounced effect of the domain adaptation was observed. Furthermore, we
observed that the relative performance of the different methods is independent of the choice of
normalization. Interestingly, in the in vivo experiments, image quotient normalization led to
almost exact reproduction of the 101 band baseline result with 16 bands. A potential loss in MAE
as observed in in silico experiments is likely, but could not be determined in vivo due to the lack
of ground truth oxygenation. We leave additional evaluation of the influence of normalization
strategies to future work.

We further explored the benefits of redundancy by allowing the wrapper algorithms to select
bands multiple times. Hereby, we could observe that only few very specific places are selected
(see Fig. 5(a)). After a certain amount of bands the algorithm seems to focus on redundancy.

This observation is in line with observations made by Guyon et al. [46] who report that
redundant but noisy features are beneficial if used jointly to average out the noise. This behavior
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is certainly linked to the independent multiplicative noise model applied to the simulated data
and might change if the noise model accounted for inter-band dependencies. In our experiments
using different SNR settings, it could be observed (Fig. 5(c)) that, although the number of bands
needed increases slightly when noise is added, the same general spectral regions are selected
(except for cases when very low noise levels are applied). Due to the varying noise levels, the
wrapper method will sometimes start adding redundant bands sooner, sometimes later. In this
context, low noise levels favor more diverse regions within the studied spectral range because the
robustness to noise via redundancy is not needed, and the regressor can therefore fit the training
data better. This results in suboptimal feature sets when transferring them between different noise
levels. The fact that band redundancy is not beneficial in a noise-free scenario could explain why
the method selects bands in different spectral regions when SNR=1000, as shown in Fig. 4(b)

As expected, the chosen bands are mostly located close to areas of high difference in
oxygenated and deoxygenated hemoglobin absorption. The bands selected by the algorithm are
thus predominantly within a small spectral range of 530-610nm. A reason for this might be that
spectra within this range are disturbed less by variation in other confounding factors such as
scattering, which can be assumed constant within small ranges.

The domain shift experiment demonstrated the effectiveness of the domain adaptation technique
used in this paper. Compared to training on the general simulation data, the domain gap could
partially be closed (see horizontal lines in Fig. 6). Using band selection in the context of a
domain shift did not negatively impact results. Across all experiments done in this section,
around 20 bands yielded the best oxygenation estimates. Interestingly, the selected bands are
quite similar, especially between selection on Xg and Xac. This is underlined by the light blue line
in Fig. 6 which shows that features selected on Xg are equally well suited as those selected on
domain-adapted data Xac, indicating that feature sets selected on Xg may be broadly applicable
across different domains.

The spectral range of the simulated camera was restricted to 500-700nm and the FWHM
was set to 20nm. In future work, we will investigate how these results generalize to different
camera setups and normalization schemes. Embedded feature selection methods such as the one
proposed in [47] could also be explored. Specifically, Cong et al. select features by adding a ℓ1
regularization term to the loss function of a support vector machine (SVM). This naturally leads
to a feature selection by driving weights of less important features down to 0. However, embedded
approaches are considerably more restrictive compared to the wrapper methods employed here
because they are limited to machine learning regressors that can incorporate such an additional
regularization term.

In vivo experiments The in vivo study relied on images of 8 head and neck tumors in a mouse
model. We investigated band selection from 101 bands ranging from 500-700nm within the
context of oxygenation estimation. The key findings were that (a) domain-adapted simulations
and measurements show good alignment, (b) experiments on data adapted to the target domain
show that BFS closely reproduces the MAE of the 101 band results for just 13 selected bands and
achieved the lowest MAE with 20 bands, and (c) using these 20 selected bands for a qualitative
analysis of the test images reveals similar predictions to the 101 bands estimate.

Interestingly, the contrast within the tumor regions seems to be sharper for the 20 bands selected
by BFS. However, due to the lack of ground truth oxygenation data, quantitative evaluation of the
band selection result is not possible for this experiment. Therefore, we are unable to definitively
determine whether the MAE of the selected 20 bands is indeed lower than the 101 bands estimate,
as suggested by our in silico experiments with domain adapted data (see Fig. 8).
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6. Conclusion

We presented a method enabling task-specific band selection based on highly accurate simulations.
In vivo and in silico results suggest the band selection can be performed purely in silico, which
greatly increases flexibility and reduces costs for selecting appropriate bands.
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