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5.1 Introduction
In the final section of his seminal paper, “Computing Machinery and Intelligence,”
Alan Turing describes his “learning machine” as being capable of acting indistin-
guishably from a human [1]. Lady Lovelace raises the criticism that computers are
inherently incapable of originality. Turing’s response to this criticism is that this
is a matter of training and that by the end of the century a “computing machine”
will be able to outperform a human. This academic repartee is widely held to be
the origins of machine learning. Approximately 70 years later, trained machines are
outperforming humans in various aspects of medical imaging analysis. One such
area is glioma segmentation and subsequent molecular profiling based on magnetic
resonance imaging (MRI). The new World Health Organization glioma classification
system relies heavily on a tumor’s genetic profile. As such, molecular profiling has
now become a critical step in predicting aggressiveness and response to therapy.

Gliomas are a diverse set of brain tumors that represent the most common primary
brain malignancy. Gliomas are either low-grade or high-grade and the grading is
dependent on histopathology, immunohistochemistry, and genetic profiling. Imaging
correlates of histopathological findings are the basis for image-based segmentation
of gliomas. The segmentation routines typically classify MRI findings into either
enhancing/active tumor, necrotic core, or surrounding edema. The ability of these
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algorithms to differentiate MRI signal of these subcomponents is what determines
the accuracy of image-based glioma segmentation. Machine learning algorithms
outperform human expert manual brain tumor segmentation by decreasing inter-
and intrarater variabilities. Accurate image-based segmentation of gliomas is an
important prerequisite to subsequent image-based molecular profiling. Numerous
machine learning algorithms have demonstrated improved glioma segmentation with
decreased variability and improvements on the time required for manual segmentation
[2–4]. In this chapter, we will discuss the topic of molecular profiling in gliomas,
and in particular, our work in developing convolutional neural networks (3-D Dense-
Unets) for MRI -based glioma segmentation and subsequent molecular profiling.
Unlike other machine learning methods, our approach facilitates clinical translation
by requiring only T2w images.

5.1.1 Glioma molecular markers
In 2008 it was found that a mutation in the citric acid cycle enzyme isocitrate
dehydrogenase (IDH) of some malignant brain tumors (glioblastomas) resulted in
an improved prognosis compared to gliomas with the wild-type form [5]. In 2016,
the World Health Organization revised their glioma classification establishing a revo-
lution in clinical glioma evaluation [6]. At multidisciplinary tumor board meetings
across the country, the knowledge of molecular status of gliomas has moved to
the forefront in clinical decision-making. The first question asked is whether the
tumor is IDH mutated, followed quickly by whether the tumor is 1p/19q codeleted,
and if the Methylguanine-DNA Methyltransferase (MGMT) promoter is methylated.
Codeletion status of 1p/19q is the most important genomic marker for oligoden-
drogliomas. Gliomas with 1p/19q codeletion demonstrate improved prognosis and
treatment response compared to gliomas without it. Methylation of MGMT promoter
silences the DNA repair MGMT enzyme epigenetically. This results in improved
response to treatment and prognosis. The only way to definitively identify these
markers is to obtain a tissue specimen acquired through biopsy or surgery and perform
immunohistochemistry or gene sequencing. Differences in the mutation status for
these markers have vital treatment implications. Thus, there is significant interest in
determining these molecular profiles prior to surgical resection and therapy initiation.
This is more important for gliomas that harbor significant risks to biopsy or surgery
due to their location. Although the molecular profiling of gliomas is now a routine part
of the work-up, it would be helpful to have this information prior to surgery. In some
cases, the information would aid in planning the extent of tumor resection. For tumors
in locations where resection is not possible, and the risk of a biopsy is high, accurate
delineation of the molecular and genetic profile of the tumor might be used to guide
empiric treatment with radiation and/or chemotherapy. While there are many new
glioma molecular markers; IDH, 1p/19q, and MGMT are critical for prognosis and
therapeutic planning. Highly accurate, noninvasive determination of these molecular
markers would be transformational in the management of gliomas. Image-based
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molecular profiling would reduce or eliminate the risks and costs associated with a
neurosurgical procedure and decrease the time to definitive treatment.

5.1.2 2HG spectroscopy for IDH status
The oncometabolite 2-hydroxyglutarate (2-HG) production is catalyzed by a mutant
form of the IDH enzyme [7]. Magnetic Resonance (MR) spectroscopy has been
used for noninvasive determination of brain tumor 2-HG [8–11]. Clinical translation,
however, has been hindered by long scan times, challenges in appropriate patient
selection based on tumor morphology, adequate voxel positioning, and the need for
local expertise for acquisition and processing. The time allotted for integration into
a clinical protocol is frequently insufficient to acquire a good quality spectrum due
to poor signal-to-noise ratio, patient motion, and additional shimming needed that
cannot be performed in the routine clinical setting. Even when good quality spectra are
obtained, 2-HG spectroscopy still carries a high false-positive rate of over 20% [12].
No MR spectroscopic methods are available for the other glioma molecular markers.

5.1.3 TCIA database
Work in brain tumor classification has been facilitated by The Cancer Imaging Archive
(TCIA), an open-access archive of medical imaging studies for cancer research [13].
The data come from multiple clinical sites across the country. The Cancer Genome
Atlas (TCGA) is a separate database with molecular characterization of a large
number of tumors. Many of the cases in the TCIA database are linked by a common
study ID to the TCGA database, allowing open access to imaging data, corresponding
molecular marker data, and clinical data in the same subjects available through the
National Cancer Institute—Genomic Data Commons (GDC) Data Portal [14]. There
are two particular TCIA collections of interest to this work: The low-grade glioma
(LGG) and the high-grade glioma (HGG) collections of brain tumors. Together these
represent a dataset of several hundred subjects.

5.1.4 MRI and deep learning for glioma molecular markers
Recent studies have employed machine learning and deep learning with MRI to
determine molecular marker status, with accuracies ranging from 80% to 93%, many
using the TCIA database [15–23]. Fluid-attenuated inversion recovery (FLAIR) MR
images along with genomic information have been be used to classify IDH mutation
status into wild type, and IDH mutated with and without 1p/19q co-deletion [15].
A support vector machine algorithm trained using 103 LGG subjects was able to
achieve an area under the curve (AUC) of 0.83 for classifying IDH status [17]. A
residual deep learning network for predicting IDH status with multicontrast MRI was
developed utilizing preprocessing steps including tumor segmentation, coregistration,
resampling, N4biascorrection, and intensity normalization [16]. A separate group
demonstrated that IDH mutation status could be determined using T2w, T2w-FLAIR
and T1-weighted (T1w) pre- and postcontrast images [18]. Several 1p/19q deep
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Table 5.1 T2-net and TS-net cross-validation results.

Fold description
Fold number

T2-net TS-net

% accuracy Dice-score % accuracy Dice-score

1 97.18 0.843 97.22 0.88
2 97.14 0.86 97.10 0.883
3 97.10 0.857 97.05 0.892
Average 97.14 ± 0.04 0.853 ± 0.009 97.12 ± 0.08 0.885 ± 0.006

Table 5.2 1p/19q-net cross-validation results.

Fold description
Fold number

1p/19q-net

% accuracy AUC Dice-score

1 93.4 0.9571 0.8151
2 94.35 0.9688 0.8057
3 92.62 0.9351 0.8000
Average 93.46 ± 0.86 0.953 ± 0.01 0.801 ± 0.007

learning algorithms developed for LGGs achieved accuracies of 65.9%–87.7% [24–
26]. Unfortunately, these methods have limited clinical viability, require extensive
preprocessing including manual tumor presegmentation, and multicontrast MR im-
age acquisitions that can have motion from longer scanning. Multiple radiomic
approaches have also been attempted, but most have poor performance compared to
the deep learning methods, and none have achieved tissue-level accuracies for clinical
viability.

5.1.5 T2w versus multicontrast MRI data
Several factors can compromise multicontrast imaging data including (1) motion, (2)
long acquisition times, and (3) the use of intravenous gadolinium. Considering the
importance of a clinically implementable technique, the use of only T2w images is
ideal, as T2w MRI are universally obtained during clinical evaluation of brain tumors.
High-quality T2w images can be acquired within 2 min and are robust to patient
motion [27,28]. Reliable, accurate, and noninvasive classification of molecular marker
status can enhance treatment planning of brain tumors, especially when biopsy or
resection is not an option.

5.2 Summary of the methods
In this section, we summarize our previously reported methods for classification of
IDH mutation status, 1p/19q codeletion status, and MGMT methylation status using
deep learning and the TCIA-TCGA database [29–31].
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Table 5.3 MGMT-net cross-validation results.

Fold description
Fold number

MGMT-net

Fold number % accuracy Fold number % accuracy

1 95.12 1 95.12
2 93.98 2 93.98
3 95.12 3 95.12
Average 94.73 ± 0.66 Average 94.73 ± 0.66

FIGURE 5.1

Yellow voxels represent IDH mutated (value of 1) and purple voxels represent IDH wild-type
(value of 2). The ground truth labels have the same mutation status for all voxels in each
tumor.

5.2.1 Classification of IDH mutation status
5.2.1.1 Material and methods
5.2.1.1.1 Data for the study
Multiparametric brain MRI data from TCIA were used to train several deep learning
networks [13]. Corresponding genomic information was provided from the TCGA
[14]. Studies were evaluated for the availability of T2w, T2w-FLAIR, and contrast
enhanced T1-weighted (T1c) image series along with IDH status. Only preoperative
studies were used. The final dataset included 214 subjects (94 IDH mutated, 120
IDH wild-type). Tumor masks for the datasets were available through previous expert
segmentation and were used as the ground truth for the tumor segmentation in the
training set [32]. Ground truth tumor masks for IDH mutated and wild-types were
labeled with 1s and 2s, respectively (Fig. 5.1). Two separate networks were developed.
These included a T2w image only network (T2w-net) trained only on the T2w images,
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and a 3-sequence network (TS-net) trained on multicontrast MR data including T2w
images, T2w-FLAIR, and T1c.

5.2.1.1.2 Preprocessing steps
The preprocessing steps included, (1) coregistering the multiparametric images to the
T1C (for TS-net), (2) affine registration to the SRI24 template with resampling to 1
mm isotropic resolution, (3) N4BiasCorrection, (4) skull stripping to isolate the brain
volume, and (5) intensity normalization.[32–34] Preprocessing took approximately 5
min per subject using advanced normalization tools [35].

5.2.1.1.3 Network details
Both the networks were trained and tested using a 3-D patch-based (32 × 32 × 32)
approach. 3-D Dense UNets were developed and trained to perform a voxel-wise two-
class whole tumor segmentation with classes 1 and 2 depicting the IDH mutated and
wild type, respectively. This approach represents a significant departure from previous
image-based IDH classification schemes which typically provide only the segmented
tumor to the network followed by radiomic feature extraction of the tumor voxels or
a CNN applied only to the segmented tumor. Our approach recasts the classification
problem as a segmentation problem on the entire image. The schematics of the T2-net
are shown in Fig. 5.2.

The dense connections were implemented in two steps including, (1) the input and
output of a particular dense block were concatenated, and (2) feature maps generated
from all the layers within a dense block were interconcatenated. The encoder portion
of the network consisted of a combination of dense blocks and transition down block,
whereas the decoder portion of the network was a combination of dense blocks and
transition up blocks. The network also consisted of a bottleneck block that helped
minimize the convolution layers. High-resolution information from the encoder to
decoder was passed through skip connections. Such connections ensured that all the
generated feature maps were reused while providing a direct supervision signal to
every layer in the architecture [36].

5.2.1.1.4 Cross-validation
To evaluate the networks’ performance and reliability, a cross-validation (threefold)
was implemented on each network separately by shuffling and splitting the dataset
into three equal groups (∼70 subjects in each group). Each cross-validation fold
demonstrates a separate training session on a distinctive combination of the three
groups alternating between training, in-training validation, and held-out testing data.
Seventy-five percent overlapping 3-D patches (size: 32 × 32 × 32) were extracted
from the training and in-training validation dataset and used to train the networks.
Data augmentation included vertical flipping, horizontal flipping, random rotation,
translational rotation, and down sampling. This provided ∼150,000 patches for both
training and in-training validation separately and avoided issues with overfitting.
Patches from the same subject were not mixed within the three groups. This avoided
the problems of data leakage and data duplication among training and testing datasets,
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FIGURE 5.2

Network architecture for both T2-net and TS-net IDH networks.



64 CHAPTER 5 Simultaneous brain tumor segmentation

a problem that is commonly encountered in 2-D networks [37,38]. The networks
were developed using keras python packages, Tensorflow backend engines, an Adam
optimizer, and pycharm Integrated Development Environment (IDE) [39–41]. The
networks were trained on a Tesla P100 NVIDIA-GPU with a batch size of 4, an
initial learning rate of 10−5, and maximal iterations of 100. Majority-voting over IDH-
mutated and IDH-wild-type voxel-wise classes were used to determine each subject’s
IDH mutation status. Additionally, an ROC curve (receiver operating characteristic
curve) was plotted using the subject-wise IDH classification. A dual-volume fusion
(DVF) (Fig. 5.3) method was designed in MATLAB using the largest connected
component method (3-D connected component) that provided a single label whole
tumor segmentation volume (Fig. 5.4). The majority-voting (50% threshold) was used
to obtain the accuracy, specificity, sensitivity, negative predictive value (NPV), and
positive predictive value (PPV).

5.2.1.2 Results
T2w-net achieved an average cross-fold validation accuracy of 97.1 ± 0.04%, sen-
sitivity of 97 ± 0.03%, specificity of 98 ± 0.01%, PPV of 98 ± 0.01%, NPV of 97
± 0.01%, and AUC of 0.98 ±0.01. The multicontrast TS-net demonstrated similar
accuracy of 97 ±0.09%, a sensitivity of 98 ±0.02%, specificity of 97 ±0.001%,
PPV of 97 ± 0.002%, NPV of 97 ±0.001%, and AUC of 0.99 ±0.01, (see Table
5.1). Fig. 5.5 demonstrates the ROC curves for the two networks with very similar
performance. The performance of these networks exceeds what has been reported in
the literature [15,16,18,42].

5.2.2 Classification of 1p/19q codeletion status
Codeletion status of 1p/19q is a key genomic marker for oligodendrogliomas. Gliomas
with 1p/19q codeletion demonstrate improved prognosis and treatment response
[43,44]. Using the previously trained 3-D-IDH network (T2w-net), a transfer learn-
ing approach was implemented for classifying the codeletion status of 1p/19q. We
demonstrated a remarkable 93% accuracy in determination of codeletion status,
outperforming any prior reports on noninvasive 1p/19q prediction, approaching histo-
logical/molecular accuracies and rivaling Fluorescence in situ hybridization (FISH).
[30].

5.2.2.1 Material and methods
5.2.2.1.1 Data and preprocessing
A total of 368 T2w brain MR images and corresponding genomic information of
glioma patients were obtained from TCIA) and TCGA databases, respectively [13,14].
The dataset included 130 1p/19q codeleted and 238 1p/19q non-codeleted cases.
Expert segmented tumor masks for these datasets were used as ground truth in training
the tumor segmentation step [32]. Ground truth tumor masks for the codeleted and
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FIGURE 5.3

T2-net overview. Input T2 image is preprocessed then provided to T2-net. Voxel-wise classification is performed for IDH-mutated and IDH-wild
type. A dual-volume fusion step is performed to combine the volumes and eliminate outliers from the main tumor cluster. Majority voting is
then performed over the two classes to determine the final IDH mutation status.
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FIGURE 5.4

Native T2 image (A). Ground truth segmentation (B). Network output without DVF (C).
Yellow voxels correspond to IDH-mutated class and purple voxels correspond to IDH
wild-type.

non-codeleted types were labeled with 1s and 2s, respectively, similar to the IDH
network. Data preprocessing steps were the same as for the IDH network.

5.2.2.1.2 Network details and cross-validation
Transfer learning was implemented on the trained 3-D IDH network (T2w-net), by
fine-tuning only the network’s decoder portion for a voxel-wise two-class segmenta-
tion of the whole tumor. The network hyperparameters and training optimizer used
during the transfer learning were kept constant from the IDH study. The transfer
learning was implemented such that classes 1 and 2 represent the codeleted and
the non-codeleted type, respectively. This was used for the final classification of
1p/19q codeletion status of an individual subject. The network architecture is shown
in Fig. 5.6.

A threefold cross-validation procedure identical to the IDH study was imple-
mented with each group consisting of ∼122 subjects. The patch extraction and
primary data augmentation procedures were similar to the IDH study. However,
additional data augmentation steps included projective transformation, and addition of
salt and pepper noise and Gaussian noise. DVF and statistical analysis for evaluating
network (majority voting, accuracy, specificity, sensitivity, NPV, PPV, and ROC
curve) were also kept the same as the IDH study.
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FIGURE 5.5

ROC curves for T2-net and TS-net.
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FIGURE 5.6

Network architecture for the 1p/19q-net. The previously trained 3-D IDH network was used.
The left arm of the Dense U-net (striped red box) is the encoder part of the network, the
right arm of the network (blue box) is the decoder part. The encoder part of the network
was frozen to retain the pretrained weights from the 3-D IDH network. The decoder part of
the network was fine-tuned for a dual class segmentation with class 1 representing 1p/19q
codeleted type and class 2 representing 1p/19q non codeleted type.
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FIGURE 5.7

Voxel-wise segmentations of 1p/19q-net. Native T2 image (A). Ground truth segmentation
(B). Network output without DVF (C). Yellow voxels correspond to 1p/19q codeleted class
and purple voxels correspond to 1p/19q non-codeleted class.

5.2.2.2 Results
The 1p/19q-net demonstrated mean subject-wise cross-validation accuracy of 93.4%,
a sensitivity of 0.90 ±0.003, specificity of 0.95 ±0.01, PPV of 0.91 ±0.02, NPV of
0.95 ±0.0003 and AUC of 0.95 ±0.01, (see Table 5.2). Fig. 5.8 demonstrates the
ROC curves for the 1p/19q network. Fig. 5.7 depicts the Voxel-wise segmentations of
1p/19q-net.

5.2.3 MGMT methylation promoter
Methylation of the O6- MGMT promoter silences the DNA repair MGMT enzyme
epigenetically resulting in improved prognosis and response to treatment [45]. Again,
using our previously trained 3-D-IDH network (T2w-net), we implemented a transfer
learning approach for determining the MGMT promoter status using only T2w MRI
from the TCIA database [31]. We demonstrated 95% mean cross-validation accuracy
with sensitivity and specificity of 96% and 92%, respectively, rivaling the accuracy,
sensitivity, and specificity of invasive histological methods such as immunofluores-
cence, methylation-specific Polymerase Chain Reaction (PCR), and pyrosequencing.
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FIGURE 5.8

ROC curves for 1p/19q cross-validation.

5.2.3.1 Material and methods
5.2.3.1.1 Data and preprocessing
T2w brain MR images and corresponding genomic information of 247 glioma patients
were retrieved from the TCIA and TCGA databases, respectively [13,14]. The dataset
consisted of 163 MGMT methylated and 84 MGMT unmethylated subjects. Expert
segmented tumor masks for these datasets were used as ground truth in training the
tumor segmentation step [32]. Ground truth tumor masks for MGMT methylated
and unmethylated types were labeled with 1s and 2s, respectively similar to the IDH
network. Data preprocessing steps were also the same.
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FIGURE 5.9

Example of voxel-wise segmentations of MGMT-net. Native T2 image (A). Ground truth
segmentation (B). Network output without DVF (C). Yellow voxels correspond to MGMT
methylated class and purple voxels correspond to MGMT unmethylated class.

5.2.3.1.2 Network details and cross-validation
A transfer learning approach identical to the 1p/19q study was used based on the 3-
D IDH network (T2-net) by fine-tuning only the decoder part of the network for a
voxel-wise two-class whole tumor segmentation. The hyperparameters and training
optimizer were the same as the IDH and 1p/19q studies. Classes 1 and 2 of the transfer
learning represent the methylated and the unmethylated types, respectively. This was
used for the final classification of MGMT promoter status for each individual subject.
The network architecture was similar to the 1p/19q-net.

A threefold cross-validation procedure identical to the 1p/19q study was imple-
mented with each group consisting of ∼82 cases. The procedures of patch extraction,
data augmentation, DVF, and statistical analysis were also the same.

5.2.3.2 Results
The MGMT-net achieved a mean cross-validation accuracy of 94.7% using majority
voting with a sensitivity of 0.96 ±0.004%, specificity of 0.91 ±0.02%, PPV of 0.95
±0.09%, NPV of 0.92 ±0.01% and AUC of 0.93 ±0.03, (see Table 5.3). Fig. 5.10
demonstrates the ROC curves for the MGMT network. Fig. 5.9 depicts the voxel-wise
segmentation of the MGMT network.
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FIGURE 5.10

ROC curves for MGMT-net cross-validation.

5.3 Discussion
Using T2w MR images to noninvasively determine the genetic underpinnings of
gliomas allows our “computing machine” to outperform humans. Diagnostic, ther-
apeutic, and prognostic considerations of gliomas are now predominantly centered
around the presence or absence of three specific mutations: IDH mutations, 1p/19q
co-deletions, and methylation of the MGMT promoter.

In this chapter we showed that our 3-D Dense-Unet CNNs have mean cross-
validation accuracies of 97.14 ±0.04%, 93.4 ±0.80%, 94.73 ±0.66% for determin-
ing IDH mutation, 1p/19q co-deletion, and methylation of the MGMT promoter,
respectively. Additionally, our 3-D Dense-Unet CNNs have a mean sensitivity and
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specificity of 0.97 ±0.03% and 0.98 ±0.01%, 0.90 ±0.003% and 0.95 ±0.01%, 0.96
±0.04% and 0.91 ±0.2% for determining IDH mutation status, 1p/19q co-deletions,
and methylation of the MGMT promoter respectively. Finally, we demonstrate that
our networks are able to achieve mean AUCs of 0.98 ±0.01, 0.95 ±0.01, and 0.93
±0.01, for these three markers, respectively. Altogether, our networks achieved ac-
curacies approaching current histopathological methodologies in determining glioma
molecular status. There are many transformative implications of this work.

The most important implication is the ability to obviate the need for an inva-
sive procedure to determine definitive treatment. After the WHO reclassification
of gliomas, performing a biopsy to obtain tissue for molecular characterization of
gliomas is the gold standard. The first step is determining if the tissue sample is
adequate. This refers not only to the volume of tissue acquired but also whether
all populations of cells are represented in the tissue sample. For example, it is not
uncommon for gliomas to degenerate into more malignant cell lines. If these cell
lines are not represented in the tissue sample, sampling bias results in inaccurate
molecular characterization of the glioma. This becomes particularly important when
molecular status determinations are made based on arbitrary “cut-off” values or
percentages of cells that demonstrate a particular mutation [46–48]. What makes this
determination even more challenging is that there are no standardized guidelines for
“cut-off” values [46–48]. Therefore, it is not uncommon for sites to classify a glioma
differently. Although advanced imaging techniques such as MR perfusion offer insight
into the relative distribution of glioma metabolic activity, it is unclear whether more
metabolically active regions always correlate to more aggressive cell lines [49,50].
Our noninvasive, image-based, deep learning networks overcome this fundamental
bias by interrogating the entire tumor volume and then using majority voting across
voxels to make a final determination.

Once the tissue sample has been deemed adequate in volume, the tissue will
undergo several steps to process it and prepare it for analysis. Improper processing
can lead to delays or the need for more tissue. Additionally, several next-generation
molecular imaging techniques require tissue to be sent out for analysis. These factors
add time and cost. Our networks are able to make molecular determinations based on
T2w MR images alone in minutes. This substantially reduces the time to diagnosis
and facilitates definitive treatment.

When compared to other deep-learning or machine learning algorithms, the use
of T2w MR images alone is also a significant advantage. T2w images are routinely
and quickly acquired as part of a conventional brain MRI protocol. High-quality
T2w images can often be acquired even with patient motion degradation. There are
several other factors that improve the performance of our networks when compared
to other image-based algorithms. The architecture of our 3-D networks utilizes
dense connections that offer several advantages: (1) they reduce overfitting, (2) they
incorporate information from all previous layers into the successive layers, and (3)
they are easier to train. The 3-D nature of our networks naturally represent interslice
information more accurately than alternative 2-D networks. Our networks also use a
DVF step that eliminates spurious voxels not connected to the tumor. Finally, because
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the networks are voxel-wise classifiers they provide a classification for each voxel in
the imaging volume. The other advantage of deep-learning networks is that as new
molecular markers are discovered, this methodology can be applied to create new
networks for those determinations.

Almost 75 years ago, speaking at a talk at the London Mathematical Society,
Alan Turing described a trainable machine that will eventually outperform its initial
instruction. He describes it by saying, “It would be like a pupil who had learnt much
from his teacher but had added much more by his own work. When this happens, I
feel that one is obliged to regard the machine as showing intelligence.” Today, deep
learning is revolutionizing how we noninvasively determine the genetic underpinnings
of gliomas. It is likely that the next step in evolution will be a more efficient network
that will automatically determine definitive treatment and accurately predict survival.
To bridge the gap between the present and the future, several limitations will need to
be overcome.

As our approach employ voxel-wise classification, the networks perform a simul-
taneous single-label tumor segmentation on the entire image volume. The networks
demonstrated excellent tumor segmentation with Dice scores of 89% and 84% for
TS-net and the T2w-net, respectively. Similarly, as the networks perform voxel-wise
classification, certain tumor portions are classified as IDH wild-type, and others as
IDH mutant. This is an interesting topic as heterogeneous variations in tumor biology
of gliomas can occur locally and over time from cell-wise variation in genetics and/or
gene expression [18,51]. Monoallelic gene expression can explain the heterogeneity
of IDH and reports of false negativity in some gliomas [49,50]. There have been some
reports of glioma heterogeneity in IDH mutation status. However, in our application
it is more likely that the imaging features of the mutation status are heterogeneous.
This results in a mixed mutated-wild type tumor segmentation output. Regardless,
our voxel-wise approach provides classification accuracies that well outperform other
methods.

Typically, deep-learning studies require a substantial amount of data to achieve
good performance. Although several data augmentation strategies exist, larger train-
ing and validation datasets are needed to improve network performance. The number
of subjects with ground truth molecular marker status and MRI from the TCIA
database is rather small compared to those used for typical deep-learning networks.
The TCIA consists of MR images from multiple institutions representing real-world
clinical experience. Additionally, the imaging vendor platforms and acquisition pa-
rameters are diverse across the imaging centers contributing data to TCIA, which
enhances the generalizability of algorithms trained using the dataset.

Although the results are very encouraging for clinical translation, performance of
these algorithms needs further evaluation on larger clinical datasets. Before applying
this approach in a clinical environment, it will be essential to train and validate the
algorithms using additional independent datasets. It will also be important to evaluate
the performance in the setting of patient motion and other imaging artifacts. This can
also provide the opportunity to implement deep learning–based approaches to mitigate
these artifacts.
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5.4 Conclusion
Using convolutional neural networks, we developed algorithms for automatically seg-
menting and predicting IDH mutation, 1p/19q co-deletion, and MGMT methylation
status of gliomas. These molecular markers now play a critical role in prognostic
and therapeutic considerations as highlighted by the recent WHO reclassification.
Our network performance rivals that of the gold- standard, invasive tissue–based
approaches. In addition to being entirely non-invasive, our approach requires only rou-
tinely obtained T2w MRI images. This greatly enhances the clinical applicability by
increasing robustness to real-world challenges such as patient motion, lengthy exam
times, and the use of intravenous contrast. Further validation and fine-tuning is needed
to facilitate clinical implementation. MR image–based deep-learning approaches to
the molecular profiling of gliomas are transformative, potentially decreasing the need
for an invasive neurosurgical procedure, decreasing the time and cost to diagnosis,
and facilitating patient care by accelerating the time to definitive treatment.
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Abstract
Gliomas demonstrate diverse imaging features, variable response to therapy, and dif-
ferences in prognosis. This is largely a function of genetic heterogeneity. Several key
mutations serve as therapeutic and prognostic markers such as isocitrate dehydrogenase
(IDH) mutation status, O6-methyl guanine-DNA methyltransferase (MGMT) promoter
status, and 1p/19q co-deletion status. Currently, the gold standard for molecular marker
determination requires tissue from either an invasive brain biopsy or surgical resection.
Here we describe our work in developing highly accurate simultaneous deep learning
segmentation and classification approaches for noninvasive profiling of molecular mark-
ers using T2-weighted magnetic resonance images only.

Keywords
Isocitrate dehydrogenase; 1p/19q; Methyl guanine-DNA methyltransferase; Deep learn-
ing; Convolutional Neural Networks (CNN); Magnetic resonance imaging; Glioma;
Dense-U-net
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