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Abstract

Purpose: Deep learning has shown promise for predicting the molecular profiles of gliomas
using MR images. Prior to clinical implementation, ensuring robustness to real-world problems,
such as patient motion, is crucial. The purpose of this study is to perform a preliminary evalu-
ation on the effects of simulated motion artifact on glioma marker classifier performance and
determine if motion correction can restore classification accuracies.

Approach: T2w images and molecular information were retrieved from the TCIA and TCGA
databases. Simulated motion was added in the k-space domain along the phase encoding direc-
tion. Classifier performance for IDH mutation, 1p/19q co-deletion, and MGMT methylation was
assessed over the range of 0% to 100% corrupted k-space lines. Rudimentary motion correction
networks were trained on the motion-corrupted images. The performance of the three glioma
marker classifiers was then evaluated on the motion-corrected images.

Results: Glioma marker classifier performance decreased markedly with increasing motion
corruption. Applying motion correction effectively restored classification accuracy for even the
most motion-corrupted images. For isocitrate dehydrogenase (IDH) classification, 99% accuracy
was achieved, exceeding the original performance of the network and representing a new bench-
mark in non-invasive MRI-based IDH classification.

Conclusions: Robust motion correction can facilitate highly accurate deep learning MRI-based
molecular marker classification, rivaling invasive tissue-based characterization methods. Motion
correction may be able to increase classification accuracy even in the absence of a visible artifact,
representing a new strategy for boosting classifier performance.
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1 Introduction

Primary brain neoplasms demonstrate broad variations in imaging features, response to therapy,
and prognosis. It has become evident that this heterogeneity is associated with specific molecular
and genetic profiles. For example, isocitrate dehydrogenase 1 and 2 (IDH 1/2) mutated gliomas1

demonstrate increased survival compared with wild-type gliomas with the same histologic grade.
Additionally, 1p/19q codeletion2 and O6-methyl guanine-DNA methyltransferase (MGMT)
promoter methylation3 are associated with differences in response to specific chemoradiation
regimens.

Although the molecular profiling of gliomas is now a routine part of the evaluation of spec-
imens obtained at biopsy or tumor resection, it would be helpful in many situations to have this
information prior to surgery. In some cases, the information would aid in planning the extent of
tumor resection. In others, for tumors in locations where resection is not possible and the risk of a
biopsy is high, accurate delineation of the molecular and genetic profile of the tumor might be
used to guide empiric treatment with radiation and/or chemotherapy. Recently, there have been
advances in classifying tumor profiles using non-invasive imaging.4,5 These classification algo-
rithms have been designed based on linear regression models, classical machine learning,6–8 and,
more recently, deep learning networks9 and have shown particular promise by outperforming
other approaches.

Our group recently achieved 97%, 93%, and 95% accuracy for classifying IDH mutation
status,5 1p/19q,10 and MGMT,11 respectively, in primary brain tumors utilizing T2w MR images
alone. An important caveat is that the effects of degradation on the input images, such as motion
artifact, and, in turn, on the performance of deep learning-based classifiers, have not been sys-
tematically studied. Motion artifacts are an especially pervasive source of MR image quality
degradation and can be due to gross patient movements, as well as cardiac and respiratory
motion.12,13 In clinical practice, these artifacts can interfere with diagnostic interpretation,14

necessitating repeat imaging in up to 20% of cases.15 Pei et al.16 applied physical models of
motion blurring to non-medical images and tested the classification performance of two deep
learning networks, demonstrating decreased accuracies. It is likely that motion corruption will
also lead to reduced performance of deep-learning algorithms in classifying brain tumor images.

The goals of our study were (1) to perform a preliminary evaluation on the effect of motion
corruption on deep learning-based molecular marker classification accuracy in gliomas and (2) to
determine if a rudimentary deep learning motion correction algorithm can recover classification
accuracies to levels similar to non-corrupted images. In assessing the effects of motion artifact
corruption on classification accuracies, we utilized our previously developed top-performing
deep learning networks for determination of IDH mutation status,5 1p/19q codeletion,10 and
MGMT methylation. These networks use only T2w images and have provided the highest
MRI-based classification accuracies reported to date, approaching those of invasive tissue-based
methods.

2 Materials and Methods

Our study design consisted of (1) simulating motion in the original T2w glioma images, (2) train-
ing a network on the motion-simulated images to generate artifact-free images using the original
non-distorted images as ground truth, (3) evaluating the motion correction performance of the
network on the held-out subjects, and (4) comparing the performance of our previously trained
glioma molecular classification networks5,10,11 using the motion-corrupted and motion-corrected
images, respectively.

The design, training, and performance of our previously trained molecular marker classifi-
cation networks for IDH, 1p/19q, and MGMT5,10,11 are briefly summarized here. These networks
were designed with a 3D-Dense-UNet architecture and trained using a 32 × 32 × 32 patch-based
approach for voxelwise dual-class segmentation of the whole tumor. The networks consisted of
(i) an initial convolution layer, (ii) an encoder with three dense blocks and three transition down
blocks, (iii) a decoder with three dense blocks and three transition up blocks, (iv) a bottleneck
dense block, and (v) a final convolution layer followed by an activation layer. T2w MR images
from 214 subjects in the TCIA were used to train and test the IDH network. The IDH network
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was trained with classes 1 and 2 representing IDH mutated and IDH wild-type, respectively. The
network yields 2 segmentation volumes, which are combined to provide a single tumor segmen-
tation map. A majority voting scheme provides a single IDH classification for each subject. The
trained IDH network demonstrated a 97% mean cross-validation accuracy for IDH prediction
on the TCIA data, representing the highest accuracy to date for noninvasive IDH prediction.
A transfer learning approach was implemented on the IDH network to develop both 1p/19q
and MGMT classification networks, with fine-tuning only of the decoder part of the IDH-
network. For the 1p/19q-network, 368 subjects from the TCIA were used to fine-tune and test
the network. Classes 1 and 2 represented 1p/19q co-deleted and 1p/19q non-co-deleted types,
respectively. A mean cross-validation accuracy of 93% was obtained for the final 1p/19q net-
work on the TCIA data representing the highest accuracy to date for non-invasive 1p/19q pre-
diction. For the MGMT-network, 247 subjects from the TCIAwere used to fine-tune and test the
network. Classes 1 and 2 represented methylated and unmethylated MGMT promoter types,
respectively. A mean cross-validation accuracy of 95% was obtained for the final MGMT net-
work on the TCIA data representing the highest accuracy to date for noninvasive MGMT pre-
diction. The entire procedure of molecular marker classification using these networks is fully
automated, and a tumor segmentation map is a natural output of the voxelwise classification
approach. For the current work, we evaluated the effects of motion and motion correction
on these pretrained high-performing molecular classification networks.

For this work, motion simulation was introduced only in-plane along the phase encoding
direction as a proof-of-principle rather than as an exhaustive study of all motion artifacts.
Similarly, rudimentary motion correction networks were trained for recovery of in-plane motion,
again as proof-of-principle. Figure 1 shows an overview of the study design.

2.1 Dataset and Preprocessing

Individual subject imaging data were retrieved from the TCIA database,17 and corresponding
tumor genomic information was obtained from the TCGA database.18 Only preoperative cases
with T2w images were included. The final IDH dataset consisted of 214 subjects (94 IDH-
mutated and 120 IDH wild-type). Imaging and genomic data from 368 subjects with a 1p/19q
co-deletion status (130 1p/19q co-deleted and 238 non-co-deleted) and 247 subjects with a
MGMT methylation status (163 MGMT methylated and 84 unmethylated) were also obtained
from the TCIA and TCGA databases.

Fig. 1 Overview of the study design.
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Minimal preprocessing was applied to the imaging datasets and consisted of (1) co-registra-
tion of the T2w images to the SR124 T2w template19 using Advanced Normalization Tools
software,20 (2) skull stripping of the T2w images using the Brain Extraction Toolkit (FMRIB
software library),21 (3) N4 bias field correction to remove radiofrequency pulse inhomogeneity,
and (4) image intensity normalization by performing zero mean and unit variance. The prepro-
cessing steps required <5 min per subject.

2.2 Motion Simulation

K-space data were obtained after applying a 2D inverse Fourier transformation to the T2w image.
Motion artifacts were simulated by incorporating additional phase to the k-space data along the
phase encoding direction according to Eq. (1) as22

EQ-TARGET;temp:intralink-;e001;116;591SMxyðkyÞ ¼ MxyðkyÞ × eð−i2πkyθðkyÞÞ;
�
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2
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2
:

(1)

where ky represents the k-space data along the phase encoding direction, MxyðkyÞ is the original
k-space, SMxyðkyÞ is the motion simulated k-space, and θðkyÞ is the phase induced by motion.
This approach closely simulates the additional phase induced by translational patient
movements.23

The total number of corrupted k-space lines is given by N, such that the outermost N∕2 lines
on either side of k-space are corrupted. The corruption rate (CR) represents the percentage of
corrupted k-space (Fig. 2), where CR ¼ N∕Ny withNy being the total number of phase encoding
lines (e.g., Ny ¼ 240). In this study, the number of corrupted k-space lines (N) is 10, 20, 60, 80,
100, 120, 140, 150, 160, 180, 200, 220, and 240, which corresponds to CRs of 4%, 8%, 25%,
33%, 42%, 50%, 58%, 63%, 67%, 75%, 83%, 92%, and 100%, respectively. These CR values
were selected to represent a broad range of motion artifacts, from minimal to highly corrupted
images.

2.3 Network Architectures

For the motion correction networks, we chose to evaluate three networks. These included a 2D
Dense U-Net (Blur-Net), SE-Net154, and SE-Net154 with a perceptive blur metric. These net-
works are fully described in the Appendix. Briefly, Model-1 (Blur-Net) was adapted from a 2D
Dense-UNet architecture24 consisting of four transition down blocks and four transition up

Fig. 2 Example of simulated motion and motion correction. Top Row: Simulated motion. From left
to right, ground truth T2w image (column 1) and corrupted images for CR=50%, 67%, 83%, and
100% (columns 2-5). Bottom Row: Motion correction using Model-1. From left to right, corrected
output images for CR ¼ 0%, 50%, 67%, 83%, and 100%).
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blocks with an initial and final convolution layer. Model-2 was based on a modified squeeze
and excitation network (SE-Net).25 SE-Net has shown promising results in image classification,
winning the 2017 ImageNet Large Scale Visual Recognition and Classification challenge.26

It consists of an input block, four transition down blocks, and four transition up blocks.
Model-3 was largely the same as Model-2, with the only difference being the use of a different
loss function that incorporated the perceptive blur metric to help the algorithm learn and reduce
errors in its predictions, particularly with respect to image sharpness.27

2.4 Training

Training of the motion correction networks was performed in two phases. First, the three motion
correction models were trained using 213 subjects from the IDH dataset. The subjects were
randomly shuffled into three groups for training, in-training validation, and held-out testing
(∼71 subjects per set). The performance of all three motion correction networks was compared
using the held-out testing set, which was not used during the training steps. The best performing
network was then selected and retrained using a larger combined dataset of 446 unique subjects
from all three molecular marker groups (IDH, 1p/19q, and MGMT). This combined dataset was
randomly shuffled into three groups to perform three-fold cross-validation. For each of the three
folds, the groups were alternated between training, in-training validation, and held-out testing
sets (∼149 subjects per set). The 2D slices were separated by subject for each of the cross-
validation folds to eliminate the problems of subject duplication and data leakage.28,29

Data augmentation was performed on the input T2w images, including horizontal and
vertical flipping, to increase training quality and diversity, which helps for training models with
limited data. The networks were implemented on NVIDIA Tesla V100 GPUs using Keras,
a python package with Tensorflow30 as the backend, with an adaptive moment optimizer. The
initial learning rate of the optimizer was set at 1 × 10−5. Model-1 and Model-2 were trained
using a combined loss function of structural similarity index (SSIM) loss, peak signal-to-noise
ratio (PSNR) loss, mean absolute error (MAE) loss, and perceptual loss, with equal weighting for
the structural components, noise level, and perceived image quality. MAE loss was selected over
MSE because MAE is believed to be more robust against the outliers and the network conver-
gence is faster with MAE.31 The loss function for Model-3 differed in its use of blur loss27

instead of MAE and perceptual loss. All networks were trained from scratch with a batch size
of 4, and training times ranged between 96 and 120 h.

2.5 Testing

The three trained motion correction networks were evaluated on the held-out testing set. The
motion corrupted input images and predicted motion-corrected output images were compared
with the ground truth non-corrupted reference images. The performance of the models was
evaluated using SSIM, PSNR, and normalized mean squared error (NMSE). The best performing
motion correction network was then retrained on the combined dataset and evaluated on the
held-out testing set for each of the three cross-validation folds. The results from each fold
were averaged across all subjects for each corruption level. The testing time for each subject
was <60 s.

The classification accuracy for the IDH mutation status was initially evaluated for the three
motion correction networks to further corroborate the selection of the best-performing network.
Molecular classification accuracies for IDH, 1p/19q, and MGMT promoter were then evaluated
using the retrained best-performing motion correction network. Accuracies were determined
using the ground truth uncorrupted images and at each of the image corruption levels (from
4% to 100% CR) for each cross-validation fold using our previously trained deep learning
molecular classification networks.5,10,11 The results were averaged across folds to provide a mean
classification accuracy for each molecular marker at each corruption level. This process was then
repeated on the motion-corrected images for IDH, 1p/19q, and MGMTat each corruption level to
determine if the ground truth accuracies could be recovered. It is worth noting that the cross-
validation folds for the motion correction training network were designed to exclude the subjects
in the molecular marker testing folds to avoid bias in determining accuracy recovery.
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3 Experimental Results

3.1 Comparison of Motion Correction Algorithms

Table 1 shows the SSIM, PSNR, and NMSE metrics for our three motion correction networks on
the held-out testing dataset at the three highest motion corruption levels. Model-1 achieved the
best performance across all three metrics, most notably PSNR. Figure 2 shows an example of the
motion corruption and motion correction performance for Model-1. Figure 3 shows the motion-
corrected output images generated by the three networks for a single subject at high levels of
motion corruption (CR ¼ 83% and 100%). Although the three models generated similar results
up to CR ¼ 50%, at higher corruption levels (CR ¼ 92%), Model-1 generated sharper images
that were visually indistinguishable from the ground truth image (Fig. 4), surpassing the other
models in terms of quantitative metrics as well as perceived visual quality.

3.2 Effects of Motion and Motion Correction on IDH/1p19q/MGMT
Classification Accuracy

Figure 5 compares IDH classification accuracy for the three motion correction networks using
uncorrected motion corrupted images and motion-corrected images at increasing motion corrup-
tion levels. The IDH classification began to fail on the motion corrupted images at a CR of 42%
and progressively deteriorated with higher corruption levels. Model-1 achieved the best results,
maintaining a 97% IDH classification accuracy through a CR of 92%. Although the other two
models were able to improve classification accuracy over the full range of image corruption
levels, they were unable to match the performance of Model-1.

Table 1 Motion correction model performance for selecting the best network.

Model

SSIM PSNR NMSE SSIM PSNR NMSE SSIM PSNR NMSE

Output for CR = 100% Output for CR = 92% Output for CR = 83%

Model-1 99.47 44.39 0.01 99.72 49.62 0.00 99.76 50.95 0.00

Model-2 99.23 42.53 0.01 99.23 42.53 0.01 99.23 42.53 0.01

Model-3 99.03 41.60 0.02 99.18 42.35 0.01 99.28 42.79 0.01

Fig. 3 Examples of motion correction at high CR levels for the three models. Input corrupted
image (column 1) at CR of 100% (top row) and 83% (bottom row), ground truth (column 2),
Model-1 output (column 3), Model-2 output (column 4), and Model-3 output (column 5). Model-1
provided visually obvious improved performance over the other two models.
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Figure 6 shows the IDH, 1p/19q co-deletion, and MGMT methylation status classification
performance on the motion corrupted images and the recovery of accuracy using the best per-
forming network (Model-1) after it was retrained on the larger combined dataset. The classi-
fication accuracy on the corrupted images declined at 42% CR for both IDH and 1p/19q,
whereas MGMT performance declined at 63% CR. For the corrected images, IDH classification
was maintained at 97% accuracy out to 92% CR and recovered to 94% accuracy even at 100%
CR. More remarkably, for correction of the native images and at lower levels of image corruption
(0% to 33%), IDH classification accuracy exceeded the performance of the uncorrupted images
achieving up to 99% accuracy. For both 1p/19q and MGMT, 82% accuracy was recovered out to
100% CR.

Fig. 5 IDH classification accuracy with respect to percent corruption for motion-corrupted images
and motion-corrected images for the three correction networks. Motion corrupted accuracies
(blue), as well as accuracies following motion correction for Model-1(orange), Model-2 (gray), and
Model-3 (yellow), are shown. A progressive decrease in classification accuracy for the corrupted
images is demonstrated beyond 42% CR (blue line). Model-1 performed best (orange line), recov-
ering the original 97% classification accuracy out to 92% CR.

Fig. 4 Example motion correction at high corruption level (CR ¼ 92%) for the three models. Input
corrupted image (column one), ground truth (column 2), Model-1 output (column 3), Model-2
output (column 4), and Model-3 output (column 5). Model-1 provided visually obvious improved
performance over the other two models as evidenced by the sharpness of the sulci and tumor
borders. Bottom row provides view of inset for input, ground truth, and each model.
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4 Discussion

We demonstrate that the performance of previously trained top-performing glioma molecular
classifiers (IDH mutation, 1p/19q co-deletion, and MGMT methylation) was adversely affected
by simulated motion corruption, with progressive loss in accuracy with increasing motion cor-
ruption. We developed and evaluated three motion correction algorithms that were able to handle
a broad range of translational motion corruption levels for glioma T2w images. Importantly,
classification accuracies could be recovered or significantly improved after applying motion
correction, even at very high levels of motion corruption. In the case of IDH classification,

Fig. 6 IDH, 1p/19q, and MGMT classification accuracies for motion corrupted (blue lines) and
Model-1 corrected images (orange lines) averaged across the three cross-validation folds for each
molecular marker. Recovery of accuracy was best for IDH classification, boosting the accuracy to
99% for the baseline uncorrupted images and low-levels of motion corruption and recovering
the original 97% accuracy out to 92% CR.
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99% accuracy was achieved following motion correction, exceeding the performance on the
native ground truth images.5

Although we expected that molecular classification accuracy would be degraded by motion
corruption, we were surprised by the relative resilience of the networks to motion corruption,
retaining accuracies up to corruption levels of ∼40%. The algorithms that we previously devel-
oped for brain tumor molecular classification were trained on relatively motion-artifact free
images from the TCIA database.5,10,11 A baseline level of motion artifact is likely present when
averaged throughout this data and could partly account for the robustness of classification accu-
racy. However, the performance declined sharply at image corruption levels beyond CR = 42%.
This work also provided a serendipitous observation, wherein the application of the motion cor-
rection network boosted the IDH classification up to an astounding 99% accuracy for the native
images without any added simulated motion, representing a new benchmark for IDH classifi-
cation. This may reflect the presence of latent image artifacts within some of the ground truth
images that obscured image features important for classification of IDH status and were then
removed by the motion correction algorithm. This also points to a potential new strategy for
boosting deep learning classifier performance with the use of motion or artifact correction net-
works, even when there is no visible motion.

Of the three motion correction algorithms, Model-1 performed the best. This model was
based on a 2D Dense-UNet architecture, which may account for its superior performance.
With its densely connected design, all feature maps are reused, such that each layer in the archi-
tecture received a direct supervision signal. In addition, the Dense-UNet architecture alleviates
the vanishing gradient problem in machine learning, which can prevent the network from further
improvement. Other advantages include feature propagation and feature reuse, as previously
described.32

All three models achieved excellent performance with SSIM of over 0.99 and RMSE of less
than 0.03 for all motion corruption levels. For comparison, Duffy et al.23 achieved SSIM and
RMSE of 0.97 and 0.04, respectively, whereas Sommer et al.33 reported SSIM of 0.86 to 0.924
when comparing motion-corrected brain MRIs with uncorrupted ground-truth images. In con-
trast to prior studies that used limited sets of motion corruption levels (Duffy et al. applied
corruption to 30 lines of k-space), we trained our models using a broad range of motion cor-
ruption levels, from a minimum (4%) to 100% of k-space lines affected. This approach better
captures real-world conditions in which there is a mixture of motion artifacts, from mild motion
that largely preserves diagnostic information to more severe cases that are uninterpretable
diagnostically.

In the setting of large amounts of motion, the MRI acquisition would typically be repeated.
However, in the clinical scenario, time constraints can preclude reacquisition of heavily motion
corrupted images, or there can be circumstances in which patient motion cannot be overcome
without sedation. Although deep-learning motion correction can be regarded as a preprocessing
step in the classification pipeline, an alternative approach would be to intentionally train the
molecular classifier networks using corrupted imaging data. Motion (and other image artifacts)
could be directly incorporated into the molecular classification network as augmentation steps
during network training. A potential caveat for such a strategy is that it could lead to the networks
erroneously learning incorrect imaging features (in the form of motion corrupted imaging
features or the motion artifacts themselves) as the basis for classifying the molecular markers.
As such, deep learning image-based classification studies have excluded data with significant
artifacts from their training database.4,6,34 Alternatively, conventional non-machine-learning-
based motion correction strategies could be utilized before applying the molecular classification
algorithms. However, a key advantage to our deep learning approach is that it may be applied
retrospectively to any previously acquired image without the need for any additional acquisition
time, special scanner preparatory steps, or additional input data.

The TCIA dataset has a variety of gliomas with different biological behaviors, including
glioblastoma, anaplastic astrocytoma, low-grade glioma, and oligodendroglioma, with their
associated variations in IDH mutation, 1p/19q co-deletion, and MGMT methylation status.
We performed an analysis of classification accuracy of our networks with respect to tumor grade
and found no significant differences in network performance. Importantly, our motion correction
networks, particularly Model-1 (Blur-Net), were able to not only remove the motion artifacts but
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also preserve the key MR imaging features of the tumors necessary for accurate classification.
This was evidenced by the full recovery of classification accuracy for the IDH network extending
out to a corruption level of 92% and markedly improved accuracies for 1p/19q co-deletion and
MGMT methylation networks following the application of the Blur-Net motion correction algo-
rithm. These compelling results support the routine use of a deep learning-based image artifact
removal step for imaging-based deep learning applications to classify glioma molecular profiles.
We demonstrated that this implementation enhances the robustness of the classification pipeline
to real-world challenges, which facilitates its potential clinical feasibility and implementation.

5 Limitations and Future Directions

It is important to note that this study was an initial evaluation and not meant to be an exhaustive
study of artifacts and artifact correction networks on molecular classifier performance. For this
initial proof-of-principle, we focused on the effect of translational motion artifacts in MR images
on deep learning molecular classification, although we recognize that other artifacts such as
rotational motion artifacts, magnetic field inhomogeneity, Gaussian noise, and radiofrequency
spikes can also affect MR image quality. Similarly, our motion correction networks were only
trained to recover translational motion for this proof-of-principle. We recognize that network
architectures and artifact correction methods are constantly evolving, and much more elaborate
motion correction strategies can be devised. Our approach, however, does provide a framework
for training, evaluating, and benchmarking artifact-correction architectures for potential insertion
into a workflow. Although we achieved excellent performance for recovering classification accu-
racy for glioma molecular profiles, our study was confined to the TCIA database. Before imple-
mentation in the clinical environment, it will be essential to train and validate using additional
independent datasets.

Although our molecular classification networks performed better using motion-corrected
images than motion-corrupted images, we could not fully restore the classification accuracies
of the 1p/19q and MGMT networks achieved using uncorrupted images. These findings indicate
that the three classification algorithms differed in terms of their resilience to motion artifact. Both
the 1p/19q and MGMT networks were based on the pre-trained IDH classifier network, with
fine-tuning to the decoder part of the network to adjust classification weights without changes to
the encoder part. This led to faster training and resultant excellent classification accuracies using
uncorrupted images but may have also rendered the networks less robust to image corruption
than the fully-trained IDH network. Although we achieved superior motion correction results
compared with previous studies, subtle residual artifacts within the image appear to have been
sufficient to affect molecular classification performance. It is also possible that performance
could be enhanced with modifications to the motion correction network architecture. We chose
to use a 2D network design for the associated lower computational demands, as well as the fact
that the TCIA database contained 2D T2w images. However, 3D architectures can be adapted in
the future.

6 Conclusion

We evaluated the effect of simulated translational motion artifacts on glioma molecular
classification networks and the ability of rudimentary motion correction networks to recover
classification accuracy. We demonstrate that high-performing classification networks for IDH
mutation status, 1p/19q co-deletion, and MGMT methylation progressively lose accuracy with
increasing motion-related image degradation. However, by incorporating motion correction prior
to the classification step, recovery of classification network accuracy was possible even at the
highest degrees of motion disruption, indicating that the network was successful not only at
removing artifacts but also in recovering crucial imaging features of the tumors. After training
the motion correction network on a larger dataset composed of all three glioma markers, we
achieved 99% accuracy for IDH classification, representing a new benchmark in non-invasive
image-based IDH classification performance. More remarkably, classification accuracy was
boosted even in the absence of added simulated motion in the native images. This provides
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a potential new strategy for boosting deep learning classifier performance by including the use of
motion or artifact correction networks, even when there is no visible motion.

7 Appendix

7.1 Network Architecture

7.1.1 Model-1 (Blur-Net)

Figure 7 shows the network architecture for Model-1 (Blur-Net), which is adapted from a 2D
Dense-UNet architecture.24 It consists of four transition down blocks, and four transition up
blocks with an initial and a final convolution layer. Each transition down block consists of a
dense block and a pooling block, and each transition up block consists of an up-sampling block
and a dense block. Each dense block has five densely connected convolutional layers, where
each layer is connected to every other layer. The feature maps of all of the convolutional layers
in the dense block were concatenated to the output of the block, providing a dense connection.
The output of the dense block was also concatenated with the input.

The encoder part of the network has four transition down blocks, which are comprised of
4 dense blocks and a pooling block. Each pooling block contains a batch normalization layer,
activation layer, convolution layer, spatial dropout layer, and maximum pooling layer. The
decoder part of the network has four transition up blocks, which are comprised of 4 dense blocks,
each of which is preceded by an up-sampling block. Up-sampling blocks are comprised of
a batch normalization layer, activation layer, deconvolution layer, and spatial dropout. The
activation layer used was a rectified linear unit. Dense block 1 was used as a bottleneck in
the network, which helps reduce the number of feature maps. This reduction can assist with
memory optimization, allowing the network to operate within the resource limits of the GPU.
Additionally, as the number of features was reduced, the network was trained in less time.
A total of 50 2D densely connected convolution layers were implemented in the Blur-Net
architecture.

Fig. 7 Architecture of the Blur-Net network (Model-1).
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7.1.2 Model-2 (SE-Net 154)

The network architecture of Model-2 (Fig. 8) was based on a modified SE-Net.25 SE-Net has
shown promising results in image classification, winning the 2017 ImageNet Large Scale Visual
Recognition Challenge classification challenge.26 The SE-Net 154-based motion correction
architecture consists of an input block, four transition down blocks, and four transition up blocks.
The input block consists of a three-convolution layer and a maximum pooling layer. Each
transition down block consists of two convolution layers as well as a group convolution layer,
concatenation layer, squeeze and excitation block, addition layer, and activation layer. The group
convolution layer split the input tensor into the number of groups, and then each group ran
through the convolution layer. In our network, the input tensor was split into 64 groups. The final
outputs of all group convolutions were then concatenated. The squeeze and excitation block is
comprised of a global average pooling layer, lambda layer, two convolution layers, rectified linear
unit activation layer, sigmoid activation layer, and multiplication layer. The lambda layer was
used for expanding the dimensions of the input tensor. Each transition up block consists of an
up-sampling layer, concatenation layer, and two convolution layers. Each transition down block
was iterated sequentially. Transition down blocks 1, 2, 3, and 4 were iterated for 3, 8, 36, and 3,
respectively. A total of 3407 convolution layers were implemented in the SE-Net 154 architecture.

7.1.3 Model-3 (SE-Net 154) with blur loss

The network architecture for Model-3 is largely the same as Model-2, with the only difference
being the use of a different loss function that incorporated the perceptive blur metric to evaluate
image blurriness.27 The use of this metric was intended to help the algorithm learn and reduce
errors in its predictions, particularly with respect to image sharpness.
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Fig. 8 Architecture of SE-Net 154 (Model-2 and Model-3). For Model-3, the perceptive blur metric
(blur loss) was substituted as the loss function.
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