
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Deep learning-based deformable
registration of dynamic contrast
enhanced MR images of the kidney

Huang, James, Guo, Junyu, Pedrosa, Ivan, Fei, Baowei

James Huang, Junyu Guo, Ivan Pedrosa, Baowei Fei, "Deep learning-based
deformable registration of dynamic contrast enhanced MR images of the
kidney," Proc. SPIE 12034, Medical Imaging 2022: Image-Guided Procedures,
Robotic Interventions, and Modeling, 1203410 (4 April 2022); doi:
10.1117/12.2611768

Event: SPIE Medical Imaging, 2022, San Diego, California, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 Apr 2022  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Deep Learning-based Deformable Registration  
of Dynamic Contrast-Enhanced MR Images of the Kidney  

James Huang 1,2, Junyu Guo 3, Ivan Pedrosa 3, and Baowei Fei 1,2,3,*  

1University of Texas at Dallas, Dept of Bioengineering, Richardson, TX 
2University of Texas at Dallas, Center for Imaging and Surgical Innovation, Richardson, TX 

3University of Texas Southwestern Medical Center, Dept of Radiology, Dallas, TX 
*E-mail: bfei@utdallas.edu, Website: https://fei-lab.org 

ABSTRACT  

Respiratory motion is a major contributor to bias in quantitative analysis of magnetic resonance imaging (MRI) 
acquisitions. Deformable registration of three-dimensional (3D) dynamic contrast-enhanced (DCE) MRI data improves 
estimation of kidney kinetic parameters. In this study, we proposed a deep learning approach with two steps: a 
convolutional neural network (CNN) based affine registration network, followed by a U-Net trained for deformable 
registration between two MR images. The proposed registration method was applied successively across consecutive 
dynamic phases of the 3D DCE-MRI dataset to reduce motion effects in the different kidney compartments (i.e., cortex, 
medulla). Successful reduction in the motion effects caused by patient respiration during image acquisition allows for 
improved kinetic analysis of the kidney. Original and registered images were analyzed and compared using dynamic 
intensity curves of the kidney compartments, target registration error of anatomical markers, image subtraction, and simple 
visual assessment. The proposed deep learning-based approach to correct motion effects in abdominal 3D DCE-MRI data 
can be applied to various kidney MR imaging applications. 

Keywords: deformable image registration; deep learning; convolutional neural network (CNN); dynamic contrast 
enhanced (DCE) MRI; kidney 
 

1. INTRODUCTION 
The kidneys are intricate organs tasked with maintaining normal human body functions by keeping a sensitive balance of 
body fluids which plays a large and direct role in the performance of the cardiovascular and autonomic nervous systems 
[1]. The renal system preserves this delicate homeostasis through filtration and excretion of metabolic waste products, as 
well as moderation of fluid volume, blood pressure, and pH levels within the body [2]. Renal cell carcinoma (RCC) arising 
from the renal epithelium is the most common type of kidney cancer, accounting for about 85% of cases [3]. Small renal 
mass (SRM) account for over 50% of renal masses and encompass a broad disease spectrum from benign tumors (20%) to 
aggressive malignancies [4]. Differentiating benign tumors from aggressive tumors is crucial in active surveillance (AS) 
[5]. Magnetic resonance imaging (MRI) is commonly used in clinical practice for diagnosis of various renal diseases. 
Dynamic contrast enhanced (DCE) MRI represents a portion of the MRI exam where images are obtained before, during 
and after the intravenous (I.V.) administration of a gadolinium-based contrast agent (GBCA). The temporal resolution and 
total acquisition time of DCE-MRI varies depending on the application. In clinical practice, only three or four post-contrast 
phases are commonly acquired for clinical evaluation of the renal pathology, such as in the characterization of renal masses 
[6-8]. In contrast, multiple rapid acquisitions (e.g. 30-40 phases) are typically obtained with by repeatedly acquiring a 3D 
T1-weighted gradient echo sequence over several minutes, creating a 4D MRI volume [9]. Following quantitative analysis 
of the contrast enhancement signal over time, various useful kinetic parameters can be extracted from the data, including 
blood flow, interstitial volume, and estimated glomerular filtration rate [2,6,7].  

Respiratory motion remains one of the main sources of suboptimal image quality and data corruption in quantitative 
analysis of abdominal MRI acquisitions [8]. Kidney imaging is highly susceptible to respiratory motion and several 
strategies have been developed for reducing motion artifacts such as external triggering techniques and image-based 

Medical Imaging 2022: Image-Guided Procedures, Robotic Interventions, and Modeling, 
edited by Cristian A. Linte, Jeffrey H. Siewerdsen, Proc. of SPIE Vol. 12034, 1203410 

© 2022 SPIE · 1605-7422 · doi: 10.1117/12.2611768

Proc. of SPIE Vol. 12034  1203410-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 Apr 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



navigators [10]. Rigid and non-rigid registration-based approaches, including optical flow and demons, have also been 
utilized and found to be relatively successful at reducing motion artifacts in abdominal DCE-MRI and other MRI data 
[2,11-13]. However, co-registration of images present additional challenges beyond artifact reduction. Indeed, in addition 
to displacement, the presence of kidney rotation, tilting, and deformation due to respiration is common. Moreover, many 
non-rigid registration algorithms result in alteration of the pixel signal, which confounds subsequent quantitative analysis.  
The advent of deep learning can further improve upon these registration algorithms by increasing registration speed and 
universality while overcoming barriers such as lack of training data through data augmentation. Deep learning has been 
applied to such image-guided interventions relying on high registration speed and spatial accuracy – for example, in MR-
US fusion for brachytherapy catheter placement and CT to x-ray registration for intraoperative surgeries [14]. Intra and 
inter-patient registration of brain 3D MR scans has greatly benefitted within the last few years from newly developed deep 
learning software, including VoxelMorph and Quicksilver [15-17]. These deep learning solutions have not been applied 
yet to abdominal MRI registration, where large organ displacements during image acquisition can occur [10]. Kidney 
DCE-MRI data can potentially benefit for image correction through deep-learning based registration [18]. The goal of this 
study is to evaluate the performance of a novel unsupervised deep learning-based approach for correcting kidney motion 
in DCE-MRI data. 

2. METHODS 

2.1 DCE-MRI data 

The abdominal 3D DCE-MRI data used in this project were acquired from 20 patients with known small renal masses 
enrolled in a prospective trial. All patients signed informed consent prior to imaging. DCE-MRI datasets, each including 
39 dynamic phases, were acquired using 3D T1-weighted gradient echo sequence on Philips 3T MRI scanner. The images 
were in 12-bit greyscale and had varying spatial dimensions of the same height-to-width ratio. Images were manually 
cropped to remove border, reduced to 8-bit greyscale, and resized to (224, 384) using bilinear interpolation. 

 
Figure 1. DCE MR images at four different dynamic phases in chronological order during the perfusion process. Yellow lines intersect 
upper and lower limits of left kidney in (a) and red lines intersect upper and lower limits of right kidney in (a). Images depict (a) phase 
3 (pre-contrast), (b) phase 5 (during the corticomedullary phase), (c) phase 8 (early nephrographic), and (d) phase 13 (nephrographic) 
of the same MRI slice. 

Figure 1 demonstrates the need for deformable registration in the kidneys. While most DCE-MRI frames acquired do not 
present any major organ shifting or motion artifacts using breath holding, the frames that do present significant amounts 
of deformation, such as in Figure 1c, detract important information from the scan which negatively affects the quantitative 
analysis. The transformations due to respiration and other factors of the right and left kidneys are independent from one 
another, causing global affine registration to be insufficient as a sole solution.  

In this project, manual kidney delineations were utilized for both training the networks and performance evaluation. The 
patient images were manually segmented in AnalyzePro (AnalyzeDirect, Inc., Overland Park, KS, 66085) to delineate the 
kidneys. Figure 2 demonstrates the high-level workflow for deformable kidney registration and analysis. 
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Figure 2. Graphical abstract of deep-learning based registration of kidney DCE-MR images. 

2.2 Affine registration network 

The affine registration network aims to perform preliminary alignment of DCE-MR images globally to improve the 
performance of the subsequent deformable registration step. As shown in Figure 3, the network takes a floating DCE-MR 
image with its corresponding segmentation as an input and a reference pair of an image and segmentation as the desired 
output. The predicted output is the affine-transformed floating image pair which should closely resemble the reference 
image pair.  

Similar affine registration network architectures have been explored in the AIRNet designed by Chee et al. [19] and 
ConvNet proposed by de Vos et al. [20]. While our method of feature extraction from the images may differ slightly from 
AIRNet and ConvNet (github.com/BDdeVos/TorchIR.git), all three networks implement a convolutional neural network 
(CNN) encoder architecture to output a matrix of transformation parameters for affine registration [19,20]. Following 
concatenation of images and segmentations, each input image underwent a series of five 3x3 convolutions and max pooling 
with a pool size of 2 in the encoder. The resultant matrix was flattened and densely connected to reduce it to an array of 
six values dictated the various affine transformations of translation, rotation, scaling, and shearing. The decoder can be 
described as a variation of the popular spatial transformer network, proposed by Jaderberg et al. [21], which converts a 
regular spatial grid of the same size as the input image to a sampling grid and applies the sampler to the input images to 
produce a warped output image. Bilinear interpolation was used to fill in unknown values. 
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Figure 3. Network architecture for 2D affine image registration. Inputs for the network are the floating MR images with corresponding 
labels and the reference images and labels, and predicted outputs are the registered images and labels.  

A loss function was optimized for backpropagation to the encoder of the affine registration network. Affine loss was 
updated as a function of the similarity between the registered image and reference image, as well as the registered label 
and reference label. The affine loss can be represented by: 

   𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝛼𝛼𝐿𝐿𝑎𝑎𝑖𝑖𝑖𝑖 + 𝛽𝛽𝐿𝐿𝑠𝑠𝑎𝑎𝑖𝑖                                                                          (1) 

where Limg is a similarity metric between the registered image and reference image multiplied by weight α and Lseg is a 
similarity metric between the registered label and the reference label multiplied by weight β. Although the segmentations 
were vital for performance evaluation of the deformable registration network, it was noted that there was an insignificant 
difference in affine registration fidelity between two network variations programmed for inclusion and exclusion of the 
segmentation information as inputs into the affine registration network. Therefore, the Lseg term can be considered as 
negligible in the affine case. 

2.3 Deformable registration network 

The 2D deformable registration network was adapted from the open-source deep learning registration library, VoxelMorph 
designed by Balakrishnan et al. VoxelMorph (github.com/voxelmorph/voxelmorph.git) employs a U-Net architecture that 
takes two input volumes and outputs a one-to-one mapping of all voxels from one n-D volume to the other as a 
displacement vector field (DVF). This state-of-the-art unsupervised network learns and optimizes a single global function 
during the training phase without the need for ground truth deformations which can be rapidly and simply evaluated on 
any testing pair of volumes with the same number of dimensions [15,16].  

Inputs to the deformable registration network are the floating image and floating label, and outputs consist of the registered 
image, registered label, and the DVF, denoted by ϕ in Figure 4. An additional input array of zeros of the same size as the 
images, named ϕ0 is used, as detailed in the VoxelMorph papers, to provide a target DVF to encourage smooth and realistic 
deformations [15,16]. The network’s feature extraction step was constructed as a standard U-Net, which consists of 
successive 3x3 convolutions in the encoder stages followed by max pooling by a factor of 2 [22]. As displayed in the 
network architecture in Figure 4, two dropout layers are included following the fourth and fifth convolutions to reduce 
overfitting. Decoder layers consist of deconvolutions and concatenations with skip connections to layers in the encoder 
with the corresponding spatial sizes to rebuild the spatial awareness of learned features [22]. The final output layer has n 
filters, where n is the number of spatial dimensions in the input data. This output can be considered as a displacement 
vector field, with a deformation vector at each voxel [15,16]. As with the affine registration network, a spatial transformer 

Proc. of SPIE Vol. 12034  1203410-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 Apr 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



network was adapted to decode the DVF into a grid to resample the floating images and segmentations, using bilinear 
interpolation to fill in unknown values. 

 
Figure 4. Network architecture for 2D deformable image registration. Inputs for the network are the floating image/segmentation and 
the reference image/segmentation and ϕ0, and predicted outputs are the registered image/segmentation and the displacement vector 
field, ϕ.  

Applying the DVF ϕ to the floating image using grid resampling and comparing the newly registered image to the reference 
image allows us to generate an unsupervised similarity loss. The same grid can be used for the floating segmentation to 
generate the registered segmentation and a more localized similarity metric for the kidneys. To achieve an anatomically 
significant deformation field in medical image registration applications, a smoothing term is applied in the loss function 
which adds the needed stability to the registration algorithm [2,15,16]. The loss function for deformable kidney registration 
is given by:  

     𝐿𝐿𝑑𝑑𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑𝑖𝑖 =  𝛼𝛼𝐿𝐿𝑎𝑎𝑖𝑖𝑖𝑖 +  𝛽𝛽𝐿𝐿𝑠𝑠𝑎𝑎𝑖𝑖 +  𝜆𝜆𝐿𝐿𝑠𝑠𝑖𝑖𝑑𝑑𝑑𝑑𝑠𝑠ℎ                                                              (2) 

where Limg and Lseg correspond to similarity metrics between the registered images/segmentations and reference 
images/segmentations. The third term, Lsmooth refers to the similarity metric between the generated DVF from the U-Net 
and the empty array, ϕ0. Each term is multiplied by a set coefficient to scale the weights of each of the loss components. These loss 
weights were discovered through a simple grid search.  

2.4 Training 

4D DCE-MR images from 20 patients were divided randomly into training (60%), validation (20%), and testing (20%) 
datasets. 4D images from 12 patients were used for training, 4 were used for validation, and the last 4 were reserved for 
testing. With each MR image containing between 20 and 30 slices, this equated to approximately 500 slices in total and 
39 phases, or frames, for each slice for a total of 19500 2D images. For each training pair, the reference image was chosen 
at random from a randomly selected slice between phases 1 and 39 and the floating image was selected from the remaining 
phases within the same slice.  

The affine registration network was trained using mean square error (MSE) as the image dissimilarity loss with a weight 
coefficient of α=1 and the Sørensen distance, or the complement to the dice similarity coefficient (DSC), with a weight of 
β=0.1 as the dissimilarity loss between the segmentations. The deformable registration network was trained using MSE as 
the image dissimilarity loss with a weight of α=1, the Sørensen distance as the segmentation dissimilarity loss with a 
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weight of β=0.15, and the average squared gradient of the outputted DVF as the smoothing loss with a weight coefficient 
of λ=0.05.  

Training for the model was done on a high-performance computer containing an 8-stack of Nvidia GeForce GTX Titan 
XPs. The weighted model whose results are evaluated in Section 3 was trained over 100 epochs with 25 steps per epoch 
and a batch size of 64. Training time was approximately two hours total at 32 seconds per epoch, including both affine and 
deformable registration models.  

2.5 Validation and Testing 

DCE-MRI data from four patients were used for testing registration. Validation was performed during training by tracking 
the normalized cross correlation, sum of squared difference, and mean squared error of the validation dataset. After 
training, testing of the model’s efficacy was conducted via a randomly- selected slice from the testing dataset which 
contained the kidneys. Successive registration using the model was applied from phase to phase of that slice, and a video 
of the registered phases was generated. A side-by-side comparison of a video of the original phases next to the registration 
video was used as a means for preliminary evaluation of performance. Furthermore, subtraction images were built to 
display the difference between the registered and original images and the Jacobian of the DVF was shown as well. Simple 
visual inspection for the purpose of verifying good model functionality assumed three things: 1) The image registration 
successfully warped the original image to be closer to the reference image without losing valuable intensity data, 2) the 
degree of motion-related misregistration was decreased, and 3) the deformation field was smooth and seemed anatomically 
significant.  

Additional quantitative evaluation involved four methods to assess registration efficacy. The first was generating the time 
intensity curve (TIC) of certain selected regions of interest (ROI) within the kidney. The TIC is the intensity signal within 
the same ROI across each of the phases. It is through the analysis of the TIC that important physiological properties for 
kidney disease diagnosis can be derived [23]. Motion artifacts and organ displacement due to respiration and other factors 
can cause a volatile and inaccurate TIC which makes diagnosis difficult [2]. Thus, successful registration of the kidneys 
should encourage a smoother, less jagged TIC while retaining the important intensity information as shown in Figure 6. 
The second quantitative metric was calculating the target registration error (TRE) of anatomical landmarks through 
manually placing several markers at the same set of locations on a reference image, affine-registered image, and 
deformable-registered image from the same slice and phase. To evaluate the fidelity of kidney delineations, the dice 
similarity coefficient and Hausdorff distance (HD) were calculated. 

3. RESULTS AND DISCUSSION 

3.1 Registration performance 

After training, a set of predictions were generated through a series of 38 successive registrations, starting from registering 
phase 2 to phase 1, then registering phase 3 to the registered phase 2, and so on until phase 39 was aligned to the registered 
phase 38.  

Two divisions of registration performance evaluation must be defined based on the chosen phases to compare. The first 
division can be referred to as successive comparison, in which the evaluation methods calculate the differences between 
consecutive phases or frames, such as the dice similarity coefficient between phase 12 and phase 11 as demonstrated in 
Figure 5a. The second type of registration assessment can be referred to as static comparison, in which the differences 
between each phase and a single selected phase are analyzed. In this project, the static image was chosen to be that of the 
frame of peak enhancement, or the phase in which the kidneys display the maximum signal intensity in DCE-MRI 
following contrast agent injection. While successive comparison provides information on organ shifting between frames, 
static comparison provides a useful technique for analyzing the overall stability of the registrations across all frames. It is 
important to note that all predictions were done using successive registration and static registration is only an evaluation 
method. Figure 5b provides an example of a static comparison between phase 9 and the peak phase of the same slice 
following deformable registration. 
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Figure 5. Two sample registrations with floating and registered phases as compared to a reference image from the same slice. The 
floating images represent the original image before both affine and deformable registration. The registered images represent the post-
affine and post-deformable registered result. (a) Successive comparison of registration performance example between phase 12 and 
phase 11 of the same slice. (b) Static comparison of registration performance example between phase 9 and peak enhancement phase 
6 of the same slice. 

Based on simple visual inspection of the two consecutive phases in Figure 5a with their corresponding difference and 
registration deformation fields, it can be shown that there is a reduction in the motion artifacts caused by patient respiration 
in phase 12. In this case, there is a clear improvement in registration on the right kidney in both the inferior and superior 
regions as compared to the original while the intensity information within the cortex and medulla are still preserved after 
registration. In Figure 5b, where phase 9 is compared to the peak phase 6, it can be seen, especially in the given difference 
images that there is an improvement in the alignment of the inferior region on the right kidney as a result of registration. 

Target registration errors were collected using AnalyzePro, with two selected targets on anatomical landmarks per kidney 
for all test slices, including original, post-affine, and post-deformable registration cases. Both successive and peak 
evaluation methods for Dice Similarity Coefficient, Hausdorff Distance (HSD), and TRE from all test slices were utilized 
to generate the metrics given in Tables 1 and 2. DSC and HSD are based on kidney segmentation masks. 
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Table 1. Dice Similarity Coefficient and Hausdorff Distance presented as mean and Target Registration Error presented as mean ± 
standard deviation for each of the original, affine, and final-warped images compared to the immediately preceding phase in the 
same slice.  

Metric Original Post-Affine Post-Deformed 
DSC 0.927 0.937 0.948 
HSD 
(mm) 2.96 2.68 2.09 

TRE 
(mm) 3.09 ± 2.51 3.04 ± 1.76 2.15 ± 1.34 

 

Table 2. Dice Similarity Coefficient and Hausdorff Distance presented as mean and Target Registration Error presented as mean ± 
standard deviation for each of the original, affine, and final-warped images compared to the static peak phase in the same slice.  

Metric Original Post-Affine Post-Deformed 
DSC 0.928 0.933 0.949 
HSD 
(mm) 2.97 2.61 2.40 

TRE 
(mm) 3.18 ± 2.58 2.82 ± 2.06 1.09 ± 1.39 

 

By comparing the metrics across each row in Tables 1 and 2, it can be shown that both the affine and deformable 
registration steps offered a significant improvement over the original DCE-MR images. In addition, paired two-tailed t-
tests between the post-deformed and original TREs for successive and static peak cases were conducted, giving a p-value 
of 0.004 in the successive case and 0.001 in the static case. Time intensity curves for three example slices for the original 
and post-deformable registration cases are shown in Figure 6. The TICs demonstrate that the deformable registration 
produced a desired smoothing behavior while maintaining vital intensity information, such as time to peak enhancement. 
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Figure 6. Evaluation of the registration performance based on the comparison between dynamic signal intensity curves within a 
ROI (left) before registration and after registration. X axis is the dynamic phase and Y axis is the mean signal intensity within the 
ROI. The ROIs chosen are given by the dotted yellow circles on the corresponding MR images. These correspond to radial regions 
(a) within the cortex of the left kidney, (b) within the cortex of the right kidney, and (c) within the medulla. 

4. CONCLUSIONS AND DISCUSSIONS 

We implemented a deep learning registration for motion correction of kidney DCE-MRI. We conducted visual qualitative 
as well as quantitative analysis of registration performance through extracting such metrics as dynamic signal intensity 
curves and target registration error at anatomical landmarks. The registration method is able to improve the image 
alignment non-rigidly for motion correction of the kidneys.   

Deep learning registration for motion correction of DCE MRI exams of the kidneys is a new application. Such techniques 
have been applied and previously reported to improve registration with the liver and lungs to remove motion effects. 
Additionally, traditional registration methods such as a Demons algorithm have been utilized for kidney registration in 
DCE-MRI with variable success. We confirm that an unsupervised neural network can be utilized to improve the 
performance and efficiency of registration for motion correction in kidney imaging. This tool could be applied to a variety 
of clinical scenarios such as operative planning, radiation therapy, and longitudinal assessment of renal function on 
dedicated MRI exams.  
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