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ABSTRACT  

Hyperspectral imaging (HSI) and radiomics have the potential to improve the accuracy of tumor malignancy prediction 
and assessment. In this work, we extracted radiomic features of fresh surgical papillary thyroid carcinoma (PTC) 
specimen that were imaged with HSI. A total of 107 unique radiomic features were extracted. This study includes 72 
ex-vivo tissue specimens from 44 patients with pathology-confirmed PTC. With the dilated hyperspectral images, the 
shape feature of least axis length was able to predict the tumor aggressiveness with a high accuracy. The HSI-based 
radiomic method may provide a useful tool to aid oncologists in determining tumors with intermediate to high risk 
and in clinical decision making.  
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1. INTRODUCTION  

Papillary thyroid carcinoma (PTC) is the most common form of differentiated thyroid cancers [1]. PTC accounts for 
approximately 80% of thyroid cancer cases [2,3]. PTC is not only the most common form of thyroid cancer but also 
among the most malignant. PTC is particularly known for its high lymph node metastasis rate, where 20-50% of 
patients will experience central lymph node metastasis [1]. Of individuals diagnosed with PTC, approximately one in 
four will not surpass the five-year survival mark [4]. The primary reason metastasis occurs is due to the invasion of 
the lymphatic system by the disease [5]. Individuals who undergo tumor resection as a therapy for PTC have recurrent 
disease nearly a third of the time [6]. 35% of individuals who suffer from recurrent disease, approximately 1 and 10 
of those diagnosed, die from the cancer [7]. Tumor aggressiveness is routinely determined during pathological 
evaluation of papillary thyroid tissue specimens via fine-needle biopsy in conjunction with preoperative notes [8]. 
Many fine-needle biopsies have inconclusive results, which leads to inefficient treatment of aggressive PTC tumors. 
Inefficient treatment is partly due to the incomplete resection of tumors [1].  

In our early work, radiomics has been used to predict PTC aggression with an AUC of 0.85 [9]. Machine learning 
techniques, such as convolutional neural networks, were demonstrated to be effective at detecting head and neck 
cancer using hyperspectral imaging (HSI) [10-15]. A previous study classified the presence of PTC metastasis on 
ultrasound with an AUC of 0.73 based on clinical features such as age and tumor stage that were outlined in the 
pathological report [16]. One research group utilized radiomics on multiparametric MRI to determine extrathyroidal 
extension, a common feature of aggressive PTC. This group was able to predict extrathyroidal extension on PTC 
tumors with an AUC of 0.87 [17]. To the best of our knowledge, this is the first work to investigate tumor 
aggressiveness classification of PTC utilizing radiomics on hyperspectral images.  

2. METHODS  

2.1 Hyperspectral Imaging  

The HSI data were acquired from 72 ex-vivo fresh surgical tissue specimens of 44 patients undergoing routine resection 
of papillary thyroid tumors. The data acquisition and system were described in our previous studies [8-9,18-22]. The 
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spectral range is from 450 nm to 900 nm. The image size is 1040×1392×91 pixels (height × width × spectral bands) 
where there is a 25 µm per pixel spatial resolution. The scanning duration for each specimen was approximately one 
minute.  

2.2 Papillary Thyroid Carcinoma Tissue Database  
The tissue specimens included two different tissue types: tumor only and tumor/normal interface tissue. We acquired 
the tissue from the primary tumor as well as tissue located at the tumor/normal margin. The tumor/normal margin, 
which contained both tumor and normal tissue, was included to determine the effects of tumor boundaries on the 
effectiveness of this classification tool. Tumor and normal tissue were outlined by a board-certified pathologist. After 
excluding benign tumors, 39 tumor and 33 tumor/normal specimens were selected for this investigation. Pathological 
reports outlining patient characteristics were also provided after the redaction of personally identifiable information.   

PTC tumor aggressiveness was defined according to the American Thyroid Association (ATA) 2015 Risk 
Stratification System for differentiating thyroid carcinomas [9, 15, 22]. We classified aggressive tumors to include 
tumors that would be identified as intermediate-risk or high-risk by the ATA. PTC tumors are categorized as 
intermediate-risk or high-risk by exhibiting one or more of the following histopathological features: aggressive 
histologic subtype (e.g., tall cell, hobnail, columnar cell), vascular invasion, tumor capsular invasion, extra-thyroidal 
extension (ETE), regional metastases, or distant metastases. Alternatively, non-aggressive, i.e., low-risk, PTC tumors 
were classified as tissues that did not containing aggressive features. The histopathological features were annotated in 
the corresponding pathological reports. Of the 44 patients, 35 were classified as aggressive, and nine were classified 
as non-aggressive. This corresponds to 58 aggressive and 14 non-aggressive tissue specimens. For this study, we 
grouped tissues into four distinct groups. These four groups are (1) aggressive tumor/normal interface tissue, (2) non-
aggressive tumor/normal interface tissue, (3) aggressive tumor tissue, and (4) non-aggressive tumor tissue.  

2.3 Preprocessing of Hyperspectral Images   
HSI of the tumors were dilated using 5, 10, 15, and 20 pixels where the spatial resolution is 25 µm per pixel. This 
procedure was performed in MATLAB (MathWorks, Inc., Natrick, MA). Dilation has the effect of emphasizing the 
portion of the tumor that overlaps with the normal tissue, as shown in gray below in Figure 1. Since extrathyroidal 
extension is an indicator of tumor metastasis and aggression, emphasizing the tumor/normal interface region 
intensifies the effect of radiomic features in that area. As a result, detection of image features indicative of tumor 
aggression may be suspected. 

 

Figure 1. Example of tumor/normal interface tissue represented as an HSI-synthesized RGB image (A), the mask of 
the tumor is shown in red (B) and the normal tissue is shown in green (B), and the result of 20-pixel dilation on the 
tumor mask is shown in blue (C), the normal mask is shown in purple (C), and the overlap of the tumor and normal 
masks is shown in gray (C).  

2.3 Radiomic Feature Extraction and Selection  

Both non-dilated and dilated HSI were loaded into the PyRadiomics package where 107 unique features were extracted 
[23]. PyRadiomics calculates shape, first-order, and texture features. Texture features include gray-level dependence 
matrix, gray-level co-occurrence matrix, gray-level run length matrix, and gray-level size zone matrix, and 
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neighboring gray tone dependence matrix features. These included 18 first order, 14 shape-based, 14 gray-level 
dependence matrix, 24 gray-level co-occurrence matrix, 16 gray-level run length matrix, 16 gray-level size zone 
matrix, and 5 neighboring gray tone dependence matrix features. These feature definitions were established by the 
Imaging Biomarker Standardization Initiative (IBSI) [24].   

After feature extraction, radiomic feature selection was performed. The purpose of feature selection is to avoid issues 
presented by high dimensionality, algorithm performance, noisy or ambiguous data, and replicability of the study [25]. 
The goal of feature selection is to identify the relationship between the radiomic feature(s) and the presence of tumor 
aggression by defining the feature(s) that largely impact, or create dependency, on the outcome of aggressive or non-
aggressive [26]. Five feature selection methods were implemented: analysis of variance (ANOVA), forward 
elimination, backward elimination, and Pearson correlation. These feature selection methods can be categorized into 
three types of feature selection tools: filter, wrapper, and embedded. Filter methods are useful due to their quick 
computation time and intolerance to overfitting. The wrapper feature selection tools are forward and backward 
elimination. In wrapper methods, features are chosen by analyzing subsets of variables that allows detection of 
interaction among variables in addition to their relationship to the prediction variable. Lastly, LASSO is an example 
of an embedded feature selection tool. This method works by combining filter and wrapper methods into a learning 
algorithm [27-30].  

2.4 Feature Extraction and Classification    

Eighteen classification algorithms were tested for each of the five feature extraction methods and five dilation groups 
(0, 5, 10, 15, 20 pixels) for a total of 450 combinations. All classification algorithms were implemented using the 
python scikit-learn package [25]. Classifiers were trained using an independent training set (N = 54 specimens). The 
predictive performance was evaluated based on an independent testing set (N = 18 specimens) using accuracy analysis. 
Both the independent training and testing sets were randomly selected on a patient basis. We did not implement a 
validation set because our training set achieved 100% accuracy. Each dilation group was tested within the group. For 
example, a 5-pixel dilated training set was used to train the algorithm for the 5-pixel dilated testing set. No patient 
overlaps occurred between the training and testing groups. 

3. RESULTS  

PTC aggression was classified with an accuracy of 100% for patients when any of the four dilation groups ((5, 10, 15, 
20 pixels). Without dilation, the accuracy was 83.3%, indicating the importance of the preprocessing step. The most 
important feature selected by each feature selection algorithm according to the different levels of dilation is outlined 
in Table 1. The number of features chosen by the respective feature selection algorithms is in parentheses in Column 
1 of Table 1. Table 1 illustrates that least axis length was chosen as the most important feature frequently. Figure 2 
shows that the feature selection methods lead to similar results regardless of the classification method.  

Table 1. The most important radiomic feature in relationship to the different feature selection methods and 
corresponding image dilation size. Least axis length is the most prevalent feature. 

 
 DILATION (pixels) 
METHODS 5 10 15 20 
ANOVA (11) Surface Volume Ratio Least Axis Length Least Axis Length Least Axis Length 

LASSO (12-15) Surface Area Surface Volume 
Ratio 

Maximum 2D 
Diameter Row 

Long Run Low Gray 
Level Emphasis 

Forward Elimination (103) Surface Volume Ratio Least Axis Length Least Axis Length Least Axis Length 

Backward Elimination (99) Surface Volume Ratio Least Axis Length Least Axis Length Least Axis Length 

Pearson Correlation (26) Surface Volume Ratio Least Axis Length Least Axis Length Least Axis Length 
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Figure 2. Heatmaps displaying embedded accuracy values for four dilation testing groups: 5 pixel (top-left), 10 pixel 
(top-right), 20 pixel (bottom-left), 1and 5 pixel (bottom-right). The feature selection methods (column) and 
classification tools (row) with a maximum accuracy of 1.00 are shown. Acronyms are outlined in Table 2.  

Table 2.  Abbreviation for the methods 

Acronym  Method   
SVC  Support-Vector Classifier   
Log  Logarithmic   
RF  Random Forest   
KNN  K- Nearest Neighbor   
GaussNB  Gaussian Naïve Bayes   
DT  Decision Trees   
XT  Extra Trees   
ABC  AdaBoost Classifier   
GB  Gradient Boosting   
SGDC  Stochastic Gradient Descent   
GPC  Gaussian Process Classification   
BNB  Bernoulli Naïve Bayes   
L_SVC  Linear Support-Vector Classifier   
LDA  Linear Discriminant Analysis   
QDA  Quadratic Discriminant Analysis   
XBG  eXtreme Gradient Boosting   
SVM  Support-Vector Machine   
ANOVA  Analysis of Variance   
LASSO  Least Absolute Shrinkage and Selection Operator   
Ridge Reg  Ridge Regression   
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Of the features selected, least axis length was chosen as an important feature most often when classifying PTC tumor 
aggression. This feature is the smallest axis length of the region of interest enclosing ellipsoid and is calculated using 
the largest principal component [23]. A paired student’s t-test showed that the least axis length is significantly different 
between aggressive and non-aggressive specimens (p < 0.05) after the dilation processing. 

Figure 3 shows the distribution of the principal components for all non-dilated HSI. Aggressive tumor tissue has a 
higher frequency surrounding a coefficient value of 0.3 than non-aggressive tumor tissue (Figure 4). Aggressive tumor 
at the tumor/normal interface is centered around a coefficient value of approximately 0.35, and non-aggressive 
tumor/normal tissue is centered around a coefficient value of approximately 0.25 (Figure 5). 

 

Figure 3. Histograms of the principal component coefficients of all specimens. 

 

Figure 4. Histograms of the principal component coefficients of tumor specimens. Aggressive tumor specimens have 
a higher principal component coefficient frequency than non-aggressive tumor specimen around 0.3. 
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Figure 5. Histograms of the principal component coefficients of tumor/normal interface specimens. Aggressive 
tumor/normal interface specimens are centered around a higher principal component coefficient of approximately 
0.35, and non-aggressive tumor/normal interface specimens are centered around a lower principal component 
coefficient of approximately 0.25.      

4. DISCUSSION & CONCLUSION  

In this work, we present a hyperspectral radiomic method for tumor aggressiveness classification. To the best of our 
knowledge, this is the first work to investigate tumor aggressiveness classification of PTC utilizing hyperspectral 
images. In this preliminary study, PTC tumor aggression was independently classified with an accuracy of 100% when 
image dilation was applied to HSI. Least axis length, a principal component shape-based feature, is a highly significant 
radiomic feature when determining PTC aggression on dilated HSI.  

An important limitation of this study is the small data set. The number of patients (N=44) may not be sufficient to 
generalize the applicability of this study in a clinical environment. Although we implemented an independent testing 
set, we cannot conclude that this data is representative of all cases that may be presented. In addition, the number of 
aggressive tissue specimen (N = 58) was much larger than the number of non-aggressive tissue specimen (N = 14).  

Least axis length is correlated to the largest principal component of an image, which can be considered as the attribute 
that is most essential to describing that image. It may correspond to morphological features within the respective tissue 
specimen. For HSI data, least axis length may be linked to the spectral information of the PTC tissues. More studies 
are required in order to explain this radiomic feature and its association with aggressive PTC. Nevertheless, this work 
demonstrates the potential of HSI radiomics for the classification of PTC tumor aggressiveness, which may provide 
an automatic tool to aid oncologists in clinical decision making. 
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