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ABSTRACT  

Magnetic resonance imaging (MRI) is useful for the detection of abnormalities affecting maternal and fetal health. In this 

study, we used a fully convolutional neural network for simultaneous segmentation of the uterine cavity and placenta on 

MR images. We trained the network with MR images of 181 patients, with 157 for training and 24 for validation. The 

segmentation performance of the algorithm was evaluated using MR images of 60 additional patients that were not 

involved in training. The average Dice similarity coefficients achieved for the uterine cavity and placenta were 92% and 

80%, respectively. The algorithm could estimate the volume of the uterine cavity and placenta with average errors of less 

than 1.1% compared to manual estimations. Automated segmentation, when incorporated into clinical use, has the potential 

to quantify, standardize, and improve placental assessment, resulting in improved outcomes for mothers and fetuses. 
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INTRODUCTION 

The human placenta is a critical and complex organ that plays a key role in a successful pregnancy. It provides oxygen 

and nutrition to the growing fetus and vital maternal-fetal exchanges, as well as barriers. Three-dimensional (3D) 

delineation of the placenta and uterus volumes with magnetic resonance imaging (MRI) has the potential to be useful in 

studying conditions that result in complications during pregnancy and delivery such as placenta accreta spectrum (PAS), 

fetal growth restriction, and rarely, intrauterine fetal death1-4. Manual segmentation of the placenta MRI to obtain volumes 

is time-consuming and subject to high inter- and intra-observer variability5.  

As an extension of our previous study on semiautomatic segmentation of the placenta and uterine cavity on MR images6, 

7, here we have expanded to automated segmentation of the placenta and uterine cavity. We used a multi-class segmentation 

for uterine cavity and placenta segmentation in pregnancy. Previous efforts for developing computerized algorithms for 

placenta segmentation in MRI8, 9 presented report low segmentation accuracy with a Dice coefficient 10 of about 72%9. 

Other algorithms need intense computation (e.g., up to two minutes per 3D image volume on average) or require multiple 

magnetic resonance (MR) image volumes (e.g., sagittal and axial acquisitions) to provide accurate segmentation8. Another 

limitation of the previous study was the small data size8. Algorithms presented in the literature for uterine MR segmentation 

of non-pregnant women11, 12 have been evaluated as well, when the volumes are smaller than in the 3rd trimester of 

pregnancy. 

Deep learning has demonstrated its strength in fast and relatively accurate segmentation of multiple organ systems from 

medical images13, 14. In this study, our objective is to present an automatic, multi-label segmentation algorithm for fast, 

accurate, and repeatable 3D segmentation of the uterine cavity and placenta in axial T2-weighted MRI. We used a modified 

Medical Imaging 2022: Biomedical Applications in Molecular, Structural, and Functional Imaging, 
edited by Barjor S. Gimi, Andrzej Krol, Proc. of SPIE Vol. 12036, 1203611  

© 2022 SPIE · 1605-7422 · doi: 10.1117/12.2613286

Proc. of SPIE Vol. 12036  1203611-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 Apr 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

U-Net architecture as a 3D end-to-end fully convolutional neural network to implement our 3D image segmentation 

algorithm.  

METHODS 

2.1 Data 

Our dataset contained 241 T2-weighted MR image volumes of the uterus from 241 pregnant women. MR imaging datasets 

were obtained from both normal and pregnancies with PAS in the second and third trimesters of pregnancy. Each image 

volume had 28 to 62 two-dimensional (2D) transverse slices. Each slice was originally 256 × 256 pixels in size except for 

three cases. For those three cases, we resized that image to 256 × 256 by zero-padding to make the slice size consistent 

across the dataset. The physical size of the image voxels ranged from 1.05 × 1.05 × 7.0 mm3 to 1.95 × 1.95 × 7.0 mm3. 

The labeled images of the uterine cavity and placenta were manually segmented by an expert radiologist.  

2.2 Data preparation and preprocessing 

For all the images in the dataset, we applied a 2D median filter to all the axial image slices under a 3 × 3 window to reduce 

the image noise while preserving the edges. Then, to reduce the effect of background voxels and makes the intensity 

distribution more consistent across the image dataset, we used Equation (1) to truncate and normalize the voxel intensity 

distribution of each image. 

 𝐼𝑖(𝑥, 𝑦, 𝑧) =  {

0 𝐼𝑖(𝑥, 𝑦, 𝑧) < 𝑝5(𝐼𝑖)

1 𝐼𝑖(𝑥, 𝑦, 𝑧) > 𝑝99.9(𝐼𝑖)
𝐼𝑖(𝑥,𝑦,𝑧)−𝑝5(𝐼𝑖)

𝑝99.9(𝐼𝑖)−𝑝5(𝐼𝑖)
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (1) 

where 𝐼𝑖(𝑥, 𝑦, 𝑧) is the ith image volume in the dataset, and 𝑝5(𝐼𝑖) and 𝑝99.9(𝐼𝑖) are the 5th and 99.9th percentiles of the voxel 

intensities in the image volume, respectively. 𝐼𝑖(𝑥, 𝑦, 𝑧) is the normalized image volume. 

For each image, there is an overlap between the manual segmentation label of the placenta and that of the uterine cavity. 

We made the segmentation labels independent from each other using one-hot encoding. We used the portion of the uterus 

that was not covered by the placenta as the uterine cavity channel and made a three-channel label that included background, 

uterine cavity (with no overlap with placenta), and placenta labels. 

We assumed that the inferior and superior slice of the uterine cavity is known. This could be helpful to limit the size of 

the data used for training and test. In a clinical setup, defining these slices could be a straightforward process that can be 

done by the operator. The number of axial slices across the datasets was variable. Therefore, to make the input size 

consistent across the training and test sets and reduce the size of the network input, we extracted a set of 3D image blocks 

(𝐵𝑖
𝑘)  from each 3D volume (𝐼𝑖(𝑥, 𝑦, 𝑧)) each contains five sequential 2D axial slices as the 3D input patches. Figure 1 

illustrates the image block extraction process from a 3D image volume. For image block extraction, only slices with uterine 

cavity were selected. For each image, every two adjacent blocks were defined with an overlap of four slices (see Figure 

1). 

We randomly divided the patients into groups of 157 training (65% of the data), 24 validation (10% of the data), and 60 

test cases (25% of the data). Exploiting the left-right symmetry of the images, we used the left-to-right reflection of the 

image volumes to make two versions of each test image; the original image and the flipped one. We use the average of the 

output probability maps for both versions to have a more accurate segmentation for each test image. 

2.3 Fully convolutional neural network architecture  

For this study, we adopted a U-Net 15 architecture which is a fully convolutional neural network (FCNN). We modified 

the architecture to make it 3D and used that for multi-label image segmentation. Figure 2 shows the network architecture 

used in this study. The network had four resolution levels with 21 layers including 18 convolutional and three max pool 

layers in total. We zero-padded the input channels of each convolution/deconvolution layer to keep the size of the output 

channels the same as the input channels. The input was a 3D image block of the MRI and the output had three channels; 

one for the background, one for the uterine cavity, and one for the placenta. 
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Figure 1. Image blocks extraction from a 3D MR image volume. 

We used a Dice similarity coefficient10 (DSC)-based loss function defined by Equation (2) to address the imbalance 

between the number of background and foreground (placenta and uterus) voxels: 

 𝐿 = 1 −
2 ∑ ∑ ∑ [𝑝(𝐼𝑥,𝑦,𝑧).𝐺𝑥,𝑦,𝑧]𝑧𝑦𝑥

∑ ∑ ∑ [𝑝(𝐼𝑥,𝑦,𝑧)]𝑧𝑦𝑥 +∑ ∑ ∑ [𝐺𝑥,𝑦,𝑧]𝑧𝑦𝑥
, (2) 

where 𝑝(𝐼𝑥,𝑦,𝑧) is the probability value of the output probability map corresponds to the input image (𝐼𝑥,𝑦,𝑧) at (𝑥, 𝑦, 𝑧) and 

𝐺𝑥,𝑦,𝑧 is the value of the reference binary mask at (𝑥, 𝑦, 𝑧). To mitigate the potential network performance bias toward 

placenta or uterine cavity segmentation, we calculated two separate loss values, one for the uterine cavity (𝐿𝑢𝑡𝑒𝑟𝑢𝑠) and 

one for the placenta (𝐿𝑝𝑙𝑎𝑐𝑒𝑛𝑡𝑎) and used the average of the two losses as the total loss. During training, the loss was 

calculated in block-level. We ran training using the Adadelta16 gradient-based optimizer for optimization.  

 

Figure 2. The FCNN architecture (3D U-Net). The number above each layer shows the number of feature maps on that 

layer. The size of feature maps in each resolution level is mentioned at the lefthand side of the level. 
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2.4 Implementation details 

We implemented the 3D U-Net model in TensorFlow17 machine learning system using Python platform. We used a high-

performance computer with 512 GB of memory and NVIDIA TITAN Xp GPU. We used a batch size of five and an initial 

learning rate of 1.0, with a dropout rate of 40%, and the decay rate and epsilon conditioning parameter for Adadelta 

optimizer to 0.9 and 1×10-10. 

2.5 Post-processing and evaluation  

The network was trained and tested on the 3D image blocks extracted from the MR images. To integrate the block-level 

results and generate the segmentation result for a 3D test image, we got the voxel-wise average of the block-level 

probability maps over the overlapped slices and measured a 3D probability map for the whole image volume. We applied 

the same process to the flipped version of each test image and used the average of the output probabilities corresponding 

to that image and the flipped image as the final probability map for the test image volume. Thresholding was applied to 

build output binary masks out of the probability maps. We compared the test results against manual segmentation labels 

using region-based and volume-based segmentation error metrics including DSC and signed volume difference (∆𝑉): 

 ∆𝑉 = 𝑉𝑠𝑒𝑔 − 𝑉𝑟𝑒𝑓, (3) 

where 𝑉𝑠𝑒𝑔 is the volume of the object of interest (either placenta or uterine cavity) on the algorithm segmentation label 

and 𝑉𝑟𝑒𝑓  is the volume of the object of interest on the manual segmentation label. We reported DSC in percent and ∆𝑉 in 

cm3 and percent: 

 ∆𝑉 (%) =
𝑉𝑠𝑒𝑔−𝑉𝑟𝑒𝑓

𝑉𝑟𝑒𝑓
× 100. (4) 

RESULTS 

3.1 Training and testing results  

We trained the network for up to 500 epochs and chose the model associated with the highest validation accuracy when 

the validation accuracy trend was plateaued. Figure 3 shows the training and validation accuracy. We reached the highest 

validation accuracy at epoch number 420 (shown with a dashed line in Figure 3). For the chosen model, the block-level 

training and validation DSCs were 93.9% and 84.2%, respectively. 

    

Figure 3. Training results. (a) Block-level training and validation accuracy trends during training based on the average 

DSCs of the placenta and uterus. The dashed line shows the validation accuracy used to choose the best model. (b) Separate 

training accuracy trends of the placenta and uterine cavity. 
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We segmented the test image datasets using the best-trained model and we achieved DSC (mean ± standard deviation) of 

91.7 ± 3.7% and 80.2 ± 10.2% for the uterine cavity and placenta, respectively. The boxplot in Figure 4 shows the 

distribution of the achieved DSC values on the test data for the uterine cavity and placenta. Table I shows the average 

image-level segmentation error across the test set. The table also compares the results to our previously reported results 

based on the semi-automatic segmentation algorithm6. Using t-test with α =0.05, we did not detect any significant 

difference between automatic and semiautomatic algorithms in terms of DSC. We measured the volume of the uterine 

cavity and placenta in the test set using the manual segmentation labels provided by the radiologist as a reference. The 

uterine cavity volume ranged from 1079 cm3 to 10096 cm3 and the volume of the placenta ranged from 161 cm3 to 2239 

cm3. The total computational time for segmenting a 3D image volume was about 14 seconds on average including the 

integration of the image and its flipped version.  

     

(a)        (b) 

Figure 4. 3D image-level accuracy of the uterine cavity and placenta segmentation in terms of (a) DSC and (b) ∆𝑉. 

 

Table I. Test results for the uterine cavity and placenta (mean ± standard deviation). 

Method N 

Uterine cavity Placenta 

DSC 

(%) 

ΔV 

(cm3) 

ΔV 

(%) 

DSC 

(%) 

ΔV 

(cm3) 

ΔV 

(%) 

Automatic 60 91.7 ± 3.7 -77 ± 583 0 ± 12 80.2 ± 10.2 20 ± 198 1.1 ± 23 

Semiautomatic7 50 87.5 ± 5.7 -247 ± 589 -4 ± 14 82.5 ± 5.8 -12 ± 151 0 ± 15 

DISCUSSION AND CONCLUSIONS 

The proposed multi-class, deep learning segmentation technique could automatically segment the uterine cavity and 

placenta in 3D MRI volumes with relatively high segmentation accuracy using a single fully convolutional network model. 

We incorporated minimal observer input (two clicks) for initializing the segmentation with uterine cavity bounding slices. 

It minimized the search space and made the algorithm more reliable in potential adaptation for clinical use. We also used 

a 3D block-based segmentation approach for improving the performance (through averaging over the overlapped regions) 

with a model flexible, employed when the number of axial slices in the input image volumes is variable. 

The DSC value for placenta segmentation is lower than that of the uterine cavity because of the higher inter-subject 

variability of size, shape, location, and MRI appearance of the placenta in comparison with the uterine cavity. However, 

Figure 4 shows that the average accuracy is affected by a few outliers. For example, for one patient the size of the uterine 

cavity and placenta (10.1 Liter and 2.2 Liter, respectively) are about two times larger than the largest ones observed in the 

training set. Figure 4b shows that on average the algorithm could estimate the placenta and uterine cavity accurately, 

excluding the outliers (median ∆𝑉 of about zero for both regions of interest).  
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In summary, we proposed a fully convolutional deep learning model for automatic segmentation of uterine cavity and 

placenta in MRI, simultaneously. The method is an expansion of our semiautomatic segmentation algorithm to an 

automatic deep learning algorithm for simultaneous 3D segmentation of the placenta and uterine cavity in T2-weighted 

MRI. To the best of our knowledge, our multi-class segmentation model is state-of-the-art in terms of accuracy and speed 

trade-off as well as clinical adaptability for placenta MR imaging. Comparing the results of the proposed automatic 

segmentation to our previous study on a semi-automatic approach showed that the algorithm could achieve a similar 

accuracy level in 3D segmentation of the placenta and uterine cavity with no statistically significant difference. The 

segmentation algorithm was able to measure placenta size and estimate its location. This first step has important clinical 

applications which, combined with textural and functional radiomics within the segmentation, will result more 

quantitiative and reliable evaluation of placenta abnormalities. Future work will focus on automatic initialization and 

testing the segmentation results in the settings of placental insufficiency and abnormal implantation. 

ACKNOWLEDGMENTS 

This research was supported in part by the U.S. National Institutes of Health (NIH) grants (R01CA156775, R01CA204254, 

R01HL140325, and R21CA231911), by the Cancer Prevention and Research Institute of Texas (CPRIT) grant RP190588. 

 

REFERENCES 

[1] Leyendecker, J. R., DuBose, M., Hosseinzadeh, K., Stone, R., Gianini, J., Childs, D. D., Snow, A. N., and Mertz, 

H., “MRI of pregnancy-related issues: abnormal placentation,” American Journal of Roentgenology, 198(2), 311-

320 (2012). 

[2] Maldjian, C., Adam, R., Pelosi, M., Pelosi III, M., Rudelli, R. D., and Maldjian, J., “MRI appearance of placenta 

percreta and placenta accreta,” Magnetic resonance imaging, 17(7), 965-971 (1999). 

[3] Do, Q. N., Lewis, M. A., Xi, Y., Madhuranthakam, A. J., Happe, S. K., Dashe, J. S., Lenkinski, R. E., Khan, A., 

and Twickler, D. M., “MRI of the placenta accreta spectrum (PAS) disorder: radiomics analysis correlates with 

surgical and pathological outcome,” Journal of Magnetic Resonance Imaging, 51(3), 936-946 (2020). 

[4] Clark, H. R., Ng, T. W., Khan, A., Happe, S., Dashe, J., Xi, Y., and Twickler, D. M., “Placenta accreta spectrum: 

correlation of MRI parameters with pathologic and surgical outcomes of high-risk pregnancies,” American 

Journal of Roentgenology, 214(6), 1417-1423 (2020). 

[5] Dahdouh, S., Andescavage, N., Yewale, S., Yarish, A., Lanham, D., Bulas, D., du Plessis, A. J., and 

Limperopoulos, C., “In vivo placental MRI shape and textural features predict fetal growth restriction and 

postnatal outcome,” Journal of Magnetic Resonance Imaging, 47(2), 449-458 (2018). 

[6] Shahedi, M., Dormer, J. D., TT, A. D., Do, Q. N., Xi, Y., Lewis, M. A., Madhuranthakam, A. J., Twickler, D. 

M., and Fei, B., "Segmentation of uterus and placenta in MR images using a fully convolutional neural network," 

SPIE Medical Imaging 2020: Computer-Aided Diagnosis. 11314, 113141R (2020). 

[7] Shahedi, M., Spong, C. Y., Dormer, J. D., Do, Q. N., Xi, Y., Lewis, M. A., Herrera, C., Madhuranthakam, A. J., 

Twickler, D. M., and Fei, B., “Deep learning-based segmentation of the placenta and uterus on MR images,” 

Journal of Medical Imaging, 8(5), 054001 (2021). 

[8] Wang, G., Zuluaga, M. A., Pratt, R., Aertsen, M., Doel, T., Klusmann, M., David, A. L., Deprest, J., Vercauteren, 

T., and Ourselin, S., “Slic-Seg: A minimally interactive segmentation of the placenta from sparse and motion-

corrupted fetal MRI in multiple views,” Medical image analysis, 34, 137-147 (2016). 

[9] Alansary, A., Kamnitsas, K., Davidson, A., Khlebnikov, R., Rajchl, M., Malamateniou, C., Rutherford, M., 

Hajnal, J. V., Glocker, B., and Rueckert, D., "Fast fully automatic segmentation of the human placenta from 

motion corrupted MRI," International conference on medical image computing and computer-assisted 

intervention. 589-597 (2016). 

[10] Dice, L. R., “Measures of the amount of ecologic association between species,” Ecology, 26(3), 297-302 (1945). 

[11] Namías, R., Bellemare, M.-E., Rahim, M., and Pirró, N., "Uterus segmentation in dynamic MRI using lbp texture 

descriptors," Medical Imaging 2014: Image Processing. 9034, 90343W (2014). 

[12] Kurata, Y., Nishio, M., Kido, A., Fujimoto, K., Yakami, M., Isoda, H., and Togashi, K., “Automatic segmentation 

of the uterus on MRI using a convolutional neural network,” Computers in biology and medicine, 114, 103438 

(2019). 

Proc. of SPIE Vol. 12036  1203611-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 Apr 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

[13] Hesamian, M. H., Jia, W., He, X., and Kennedy, P., “Deep learning techniques for medical image segmentation: 

achievements and challenges,” Journal of digital imaging, 32(4), 582-596 (2019). 

[14] Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J. N., Wu, Z., and Ding, X., “Embracing imperfect datasets: A 

review of deep learning solutions for medical image segmentation,” Medical Image Analysis, 63, 101693 (2020). 

[15] Ronneberger, O., Fischer, P., and Brox, T., "U-net: Convolutional networks for biomedical image segmentation," 

International Conference on Medical image computing and computer-assisted intervention. 234-241 (2015). 

[16] Zeiler, M. D., “Adadelta: an adaptive learning rate method,” arXiv preprint arXiv:1212.5701, (2012). 

[17] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., and Isard, 

M., "Tensorflow: A system for large-scale machine learning," 12th {USENIX} symposium on operating systems 

design and implementation ({OSDI} 16). 265-283 (2016). 

 

Proc. of SPIE Vol. 12036  1203611-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 Apr 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


