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ABSTRACT  

Hyperspectral imaging (HSI), a non-invasive imaging modality, has been successfully used in many different biological 

and medical applications. One such application is in the field of oncology, where hyperspectral imaging is being used on 

histologic samples. This study compares the performances of different image classifiers using different imaging modalities 

as training data. From a database of 33 fixed tissues from head and neck patients with follicular thyroid carcinoma, we 

produced three different datasets: an RGB image dataset that was acquired from a whole slide image scanner, a 

hyperspectral (HS) dataset that was acquired with a compact hyperspectral camera, and an HS-synthesized RGB image 

dataset. Three separate deep learning classifiers were trained using the three datasets. We show that the deep learning 

classifier trained on HSI data has an area under the receiver operator characteristic curve (AUC-ROC) of 0.966, higher 

than that of the classifiers trained on RGB and HSI-synthesized RGB data. This study demonstrates that hyperspectral 

images improve the performance of cancer classification on whole histologic slides. Hyperspectral imaging and deep 

learning provide an automatic tool for thyroid cancer detection on whole histologic slides.    

Keywords: Hyperspectral imaging, whole-slide histologic imaging, thyroid cancer, deep learning, digital pathology 

 

INTRODUCTION 

Head and neck cancer (HNC) refers to a broad class of cancer types that occur within the oropharynx, the tongue, the nasal 

cavity, the paranasal, the thyroid, and the larynx. It is the seventh most common type of cancer worldwide with 890,000 

new cases reported annually [1]. HNC cases are on the rise globally, due to the increase in alcohol use, smoking, and HPV-

associated oropharyngeal cancer [1, 2].  The majority of HNC are head and neck squamous cell carcinoma (HNSCC) [3]. 

Surgery remains the primary curative method of squamous cell HNC, often in combination with radiotherapy and 

chemotherapy [1, 2, 4]. During surgery, the surgeon determines the tumor margin and tried to remove the entire tumor. A 

tumor margin of as close as 1 mm has been shown to significantly increase the remission rate [5]. A more acceptable 

surgical margin ranges from 5 mm to 20 mm [6]. On the other hand, as much non-tumor tissue should be preserved as 

possible, so that normal functions are minimally disrupted. Intraoperative pathology consultants (IPC) are known to 

produce inconsistent results when it comes to the tumor margin [5, 6]. Errors come from sampling errors and inconsistent 

definitions of “safe” surgical margins [5, 7-9]. Estimation of true negative margins varies but ranges from 50 to 80% [8, 

10]. Furthermore, IPC can be a time consuming procedure, taking 25-45 minutes per sample [6]. Computer-aided diagnosis 

(CAD) may help reduce the time during IPC. In a CAD-based workflow, the whole slide image (WSI) is processed, and a 

cancer tumor margin is produced.  

CAD algorithms often use machine learning algorithms such as support vector machines (SVM) [11-14] and 

convolutional neural networks (CNNs). SVM requires hand-crafted features such as color and textures for quality 

classification. If an image has too many correlated features, dimensionality reduction methods such as principal component 

analysis (PCA) or t-distributed stochastic neighbor embedding (t-SNE) can be applied to produce more valuable features 
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from existing ones [11, 12]. On the other hand, CNNs can work with highly non-linear inputs such as images. As such, 

CNN-based CAD do not rely as heavily on pre-processing as SVM-based CAD workflows. The popularity of CNN-based 

CAD also comes from pretrained networks, which are networks that have weights already set from training on millions of 

images prior. Many pretrained networks architectures such as Inception, LeNet, ResNet, and VGG are publicly available 

[15, 16]. For HNC, Halicek et al. [16] trained a CNN-based classifier using microscopic H&E-stained images as inputs. 

The classifier achieves a patch-based area under the receiving operating characteristic curve (AUC-ROC) of 0.916 for all 

SCC patients. Gupta et al. [17] trained a CNN-based classifier on microscopic H&E-stained slides to grade severity of 

dysplasia in the oral squamous region. Their classifier achieved 89.3% grading accuracy. Chu et al. [18] reported a review 

of various machine learning and deep learning-based classifiers used in oral SCC classification and detection.  

The standard inputs for microscopic images have been hematoxylin and eosin (H&E) stained slides, captured by 

a regular RGB camera [15, 16, 19, 20]. Halicek et al. [15] showed that using autofluorescence images produce better 

classifier compared to using images of proflavine dye and using RGB images of tissues. Fakurnejad et al. [21] used a 

fluorescing anti-epidermal growth factor receptor contrast agent to identify high-grade dysplasia. Hyperspectral imaging 

(HSI) is a non-invasive, non-dye method that captures the reflectance spectra of the tissue in a very small increment (e.g., 

<5 nm). For microscopic images, HSI inputs showed improvements in identification of cancer over regular RGB images. 

Ortega et al. [22] compared the performance of HSI and RGB inputs over microscopic images of breast cancer. They found 

an AUC-ROC of 0.90 for HSI inputs and suggested that uses of HSI inputs outperform those that use RGB inputs. More 

recently, in the HNC domain, Ma et al. [23] compared the performances of two classifiers: one uses HSI of H&E-stained 

microscopic images as input, the other one uses synthesized RGB images as input. They found that HSI inputs trained a 

better classifier. Still, there is a lack of concrete literature that compares the performance between HSI, RGB, and 

synthesized RGB as inputs across a wide variety of microscopic imaging classification tasks. 

Our paper seeks to innovate in both image acquisition and classification aspects. For image acquisitions, we propose 

a new method of whole slide microscopic image acquisition for hyperspectral imaging. Ortega et al. [24] produced a small 

hyperspectral image database of microscopic brain tissue. Liao et al. [25] captured tetra-pixel whole slide microscopic 

images in hyperspectral domain using slit arrays. In classification, we propose a tumor margin determination algorithm 

that use the entire microscopic whole slide image in the HSI domain as input. Ma et al. [6] proposed a tumor margin 

assessment algorithm using hyperspectral images as input. Ma et al. [26] also proposed a patch-based HNSCC detection 

algorithm using hyperspectral images as input. To the best of our knowledge, this study is the first work to investigate 

HNC on the whole slide level using hyperspectral images as inputs. 

METHODS 

1.1 Histologic Slides from Thyroid Cancer Patients 

The histologic slides and their acquisitions were described in our previous studies [6, 23, 27]. Briefly, 33 head and neck 

histologic slides of the thyroid region taken from 23 cancer patients were used. All histologic slides from our collection 

are of follicular type; this is in contrast with other types of HNC which are majority squamous cells carcinomas [28]. The 

histologic slides were fixed and underwent hematoxylin and eosin (H&E) staining. Each histologic slides were imaged in 

two different methods, from which three datasets were created: the hyperspectral image dataset, the conventional RGB 

image dataset, and the HSI-synthesized RGB image dataset. From each dataset, we train a different classifier. The 

following sections detail the creation of each dataset. 

1.2 Conventional RGB Image Dataset 

All slides were digitized at 40× magnification using a whole slide scanner that produces RGB digital slides with spatial 

resolution of 0.23 μm [29]. From these whole slide images, we produced non-overlapping patches with the size of 

400×400×3, which we then downsampled to 200×200×3. The cancerous regions in the digitized images were manually 

annotated by a board-certified pathologist. This annotation serves as our only ground truth for both RGB image dataset 

and HSI image dataset. We trained and fine-tuned the “RGB classifier” on this dataset. 

1.3 Hyperspectral Image Dataset 

We used a custom HSI system to acquire whole slide hyperspectral images of the tissue slides. The system includes an 

optical microscope, a compact hyperspectral snapshot camera, and a high-precision motorized stage as reported in [6]. For 
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whole slide images, we developed a program in LabView that synchronizes stage movement with camera acquisition. The 

program divides the whole slide into rectangular grid, and the camera goes through each segment of the grid to capture the 

image. Afterward, a phase correlation algorithm was used to account for any overlap between each image segment. All 

images were acquired at an objective of 20×. The image’s raster size was 2000 pixel × 2000 pixel × 84 bands, acquired 

within the wavelength range from 467 nm to 721 nm. The raw hyperspectral data (𝐼𝑟𝑎𝑤) were normalized at each 

wavelength by using the inherent dark current (𝐼𝑑𝑎𝑟𝑘) image and the white reference image (𝐼𝑤ℎ𝑖𝑡𝑒) with the following 

equation [30]: 

𝐼𝑛𝑜𝑟𝑚(𝜆, 𝑠) =
𝐼𝑟𝑎𝑤 − 𝐼𝑑𝑎𝑟𝑘

𝐼𝑤ℎ𝑖𝑡𝑒 − 𝐼𝑑𝑎𝑟𝑘

 

From the whole slide image, we produce non-overlapping image patches of size 400×400×84, which we then down-sample 

to 200×200×84 to train our neural network. Because stitching all hyperspectral images together would produce a WSI with 

very large raster size (100,000 × 100,000 × 84), we produced patches directly from each individual image. Figure 1 shows 

the complete acquisition and patch productions workflow. We trained and finetuned the “HSI classifier” on this dataset. 

Because we used two different systems to produce the RGB dataset and the hyperspectral image dataset, the patches we 

produced in each dataset are not the same. The number of patches used in the train/validation/test split for RGB dataset is 

15,287/7145/6098, whereas for the HSI dataset they are 15,168/7339/6301. We trained and fine-tuned the “HSI classifier” 

on this dataset. 

 

Figure 1. The workflow for our whole slide patch-based acquisition algorithm. With this method, patches for the entire slide 

can be produced without directly producing the whole slide image. (A) The sample in acquisition. (B) The individual images 

captured by the camera. (C) Overlapping regions are determined using phase correlation algorithm. (D) and (E) patches 

coordinates were created using overlapping regions determined in the previous part. (F) overlapping patches are combined by 

averaging the values of the pixels.  

1.4 HSI-synthesized-RGB Image Dataset 

Using techniques previously used in [23], we synthesized RGB images from hyperspectral images. The algorithm uses the 

spectral response of human perception to colors to generate pseudo-RGB images. We trained and finetuned the “HSI-
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synthesized-RGB classifier” on this dataset. Because this dataset is synthesized directly from the HSI dataset, there is a 

one-to-one match between the original HSI and synthesized-RGB datasets. 

1.5 Convolutional Neural Network 

We trained three convolutional neural networks based on the VGG-19 architecture [31]. VGG-19 consists of two sections: 

a convolutional network (16 layers) and a feedforward network (3 layers). We set the initial weights using a pretrained 

VGG-19 network that has been trained on >1 million RGB images. All networks were modified to output only one binary 

class. To fit the network to our specific application, we applied several modifications. Spatially, the original pretrained 

VGG-19 network accepts 224×224×3 images as inputs. A workaround for this is an adaptive pooling layer prior to the 

flatten layer, so that the input into the feedforward dense network always stay the same. VGG-19 network originally has 

1000 class outputs; we changed this to a single binary output range from 0 to 1. Because the conventional RGB image 

dataset and the HSI-synthesized-RGB image dataset already have input dimension of 200 pixels×200 pixels×3 channels, 

no other modification was needed to train the “RGB classifier” and the “HSI-synthesized-RGB classifier.” For the “HSI 

classifier,” we proposed a modified architecture that preserves the advantages of pretrained networks and accepts 200 

pixels×200 pixels×84 channels images as inputs. The 84-channel image is divided into 27 sequential groups of 200 ×200 

×3-channel images. Each group corresponds to a wavelength section. In the forwarding step, each 3-channel image will 

be fed sequentially into a VGG-19 network, producing 27 sequential values. We add a perceptron layer, which is a single 

feedforward layer that combines 27 inputs and produce a final binary output from 0 to 1. In the backward pass, the gradient 

is cumulative across all groups to move the network parameter.  Figure 2 shows the modified architecture. Table 1 shows 

the output size of each layer/block. To regularize the network, dropout value of 0.5 was employed in the feedforward 

network.    

 

Figure 2. Network architecture for the HSI classifier network. The HSI is sectioned into 27 3-channels sub-images. Each sub-

image is fed into VGG-19 individually. The final feedforward layer combines all outputs to provide a cancer predictive 

probability ranging from 0 to 1. 

 

Table 1. CNN architecture for the HSI classifier network. 

 

Layer/Block Output size (B×H×W×C) 

Input 200×200×84 

Divide 27×200×200×3 

Conv2D+ReLU 27×200×200×64 

Conv2D+ReLU 27×200×200×64 

MaxPool 27×100×100×64 

Conv2D+ReLU 27×100×100×128 
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Conv2D+ReLU 27×100×100×128 

MaxPool 27×50×50×128 

Conv2D+ReLU 27×50×50×256 

Conv2D+ReLU 27×50×50×256 

MaxPool 27×25×25×256 

Conv2D+ReLU 27×25×25×512 

Conv2D+ReLU 27×25×25×512 

Conv2D+ReLU 27×25×25×512 

Conv2D+ReLU 27×25×25×512 

MaxPool 27×12×12×512 

Conv2D+ReLU 27×12×12×512 

Conv2D+ReLU 27×12×12×512 

Conv2D+ReLU 27×12×12×512 

Conv2D+ReLU 27×12×12×512 

AdaptivePool 27×7×7×512 

Flatten 27×25,088 

Dense 27×4096 

Dense 27×1 

Dense (“Sigmoid”) 1 

 

1.6 Metrics and Network Training 

The network was implemented in PyTorch and trained on Titan XP NVIDIA 16GB GPU. The optimization algorithm is 

mini-batch gradient descent. Each training dataset consists of the same 23 WSI, each of which contain entirely tumor or 

normal tissue. Each validation dataset consists of the same 5 WSI, each of which contain a tumor margin. Each test dataset 

consists of the same 5 WSI, each of which contain a tumor margin. Early stopping was used, which means training will 

stop after the validation metrics do not improve after a certain number of epochs.  

The metric we use is the F-1 score, which is the average of the precision and recall. Precision and recall are 

calculated from the true positive (TP), true negative (TN), and false positive (FP) rates. Precision is the ratio of true positive 

values over all positive predicted values, while recall (sensitivity) is the ratio of true positive values over all actual positive 

values [32]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

2
 

We fine-tuned each network by varying the learning rate and the batch size, keeping all other parameters constant. 

The network with the best F-1 score on each validation dataset will be selected. We found the optimal batch size and 

learning rate for training both conventional RGB images and HSI-synthesized RGB images to be 64 and 5×10-3. The 

optimal batch size and learning rate for training HSI images is 4 and 1×10-4. 
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RESULT 

1.7 Training and Validation Result 

We evaluate the validation accuracy by setting the classification probability cutoff for tumor at 50 percent. All classifiers 

achieved good training fit with an F-1 score of > 0.99 and a classification accuracy of > 99%. Table 2 shows the validation 

F-1 score and the AUC-ROC for the best classifier within each image set. Even though the selection of best performing 

classifier is based on F-1 score, we observed that F-1 score and classification accuracy during training are highly correlated. 

If we count all images in the validation dataset, all three classifiers have similar F-1 scores, and the HSI classifier had a 

slightly lower AUC-ROC. However, there is a large disparity in classification quality from patient to patient within the 

validation dataset. Most notably, in Patient V4, all classifiers underperform compared to that in other patients. If we remove 

Patient V4, the F-1 score in conventional RGB, HSI-synthesized RGB, and HSI validation dataset will become 0.8589, 

0.8644, and 0.8677, respectively. Visual inspection of Patient V4 WSI shows that the ground truth includes a large region 

of thyroid follicle, which all classifiers predict as normal. 

 

Table 2. Performance of each classifier on the validation dataset. The weighted average takes the number of patches of 

each patient into consideration. 

Patient Conventional RGB HSI-synthesized RGB HSI 

F-1 AUC-ROC F-1 AUC-ROC F-1 AUC-ROC 

V1 0.9102 0.9844 0.8458 0.9695 0.9116 0.9798 

V2 0.8391 0.9587 0.8343 0.9592 0.8817 0.9758 

V3 0.8122 0.9187 0.8464 0.9338 0.8152 0.9109 

V4 0.6689 0.8945 0.7646 0.9335 0.6813 0.8332 

V5 0.9154 0.9573 0.9088 0.9371 0.8931 0.9374 

Weighted Average 0.8427 0.9472 0.8472 0.9497 0.8460 0.9380 

Unweighted Average 0.8314 0.9435 0.8412 0.9471 0.8382 0.9292 

 

1.8 Testing Result 

Conventional RGB classifier achieves an AUC-ROC of 0.9333 (Table 3). HSI-synthesized RGB classifier achieves 

slightly better AUC-ROC at 0.9471. HSI classifier achieves the highest AUC-ROC at 0.9660. Figure 3 shows the ROC 

curve of each classifier. If we set the tumor cutoff at 50%, HSI classifier will achieve the highest overall F-1 score (0.8672) 

compared to those of HSI-synthesized RGB (0.8427) and conventional RGB classifier (0.8310). In terms of F-1 score, all 

classifiers performed the worst on Patient T5. Visual inspection of T5 WSI (Figure 4) shows a negative region of thyroid 

gland that is predicted by all classifiers as tumor with high probability. Another notable WSI is T4, which achieve high F-

1 score in HSI-synthesized RGB and HSI classifier but low F-1 score in conventional RGB. Visual inspection of T4 (Figure 

5) WSI shows that the HSI classifier produce margins that stay closest to the ground truth, whereas conventional RGB 

classifier under predicts the cancer margin. This speaks to the robustness of the HSI classifier in consistently making 

predictions that are close to the ground truth compared to conventional RGB image classifier. Also note that the thyroid 

cancer RGB dataset has been used prior in training an Inception-V4 network and achieved a test AUC-ROC of 0.954 and 

an F-1 score of 0.894 [29] where a much larger dataset of 153 WSI  were used in the training.    

1.9 Visualizing HSI Network 

Due to the architecture of the HSI network, all weights in the convolutional and the feedforward network are shared. The 

final layer is a feedforward layer that calculates the final prediction score based on the output from each wavelength range. 

By extracting the weights of this final layer, we can visualize how much importance the network assigns to each 

wavelength in making the final prediction. Figure 6 shows that the network gives the most weights of prediction to the 
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wavelength range 500-650 nm and the least toward the wavelength range 650-720nm. Figure 6 also shows representative 

images at different wavelengths. At higher wavelengths, the image is noisier and potentially is less valuable for the image 

classifier.   

 

Table 3. Performance of each classifier on the test dataset. The weighted average takes the number of patches of each 

patient into consideration. 

Patient Conventional RGB HSI-synthesized RGB HSI 

F-1 AUC-ROC F-1 AUC-ROC F-1 AUC-ROC 

T1 0.8461 0.9648 0.8207 0.9623 0.8222 0.9605 

T2 0.9569 0.9923 0.9428 0.9907 0.9277 0.9869 

T3 0.9444 0.9831 0.9444 0.9886 0.9559 0.9912 

T4 0.7079 0.8860 0.8273 0.9334 0.8923 0.9755 

T5 0.6978 0.9391 0.6392 0.9130 0.6791 0.9418 

Weighted Average 0.8310 0.9333 0.8427 0.9471 0.8672 0.9660 

Unweighted Average 0.8307 0.9498 0.8362 0.9559 0.8574 0.9703 

 

 

Figure 3. Receiving operating characteristic curves for three classifiers on the test dataset. 
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Figure 4. Left. WSI of patient T5 using whole slide RGB scanner. Tumor margin is outlined by a pathologist in green. 

Right. Cancer probability predictions made on patient T5 on a scale of 0 (normal, blue) to 1 (tumor, red).  

 

 

Figure 5. Left. WSI of patient T4 using whole slide RGB scanner. Tumor margin is outlined by a pathologist in green. 

Right. Cancer probability predictions made on patient T4 on a scale of 0 (normal, blue) to 1 (tumor, red).  
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Figure 6. Left. Weight assigned by the HSI classifier to each wavelength. Right. Sample images from different wavelengths. 

At higher wavelengths, the image tends to get noisier. 

CONCLUSIONS AND DISCUSSIONS 

We demonstrate the acquisition of a hyperspectral histology whole slide image database (33 whole slide images). We also 

demonstrate the use of hyperspectral imaging to identify cancer margin on whole slide histology images. By comparing 

the performance of the HSI network with an equivalent network trained on RGB images, we demonstrate the improvements 

of hyperspectral imaging data over other alternatives. The study is necessary to validate the role of hyperspectral imaging 

in improving classification results. 

One limitation of the study is the difference in the number of patches in the training, validation, and test dataset between 

the RGB and the HSI image dataset. This difference makes it hard to use statistical methods such as McNemar’s test to 

directly compare the classifiers. However, we believe that the differences in the number of patches do not contribute much 

to the differences in network performance.  If we look at the test performance in patient T4 and T5, we see that these 

patients contribute the most differences in test performance. We believe that even if we match the patches between HSI 

and RGB dataset, the classification margin would stay the same, and so would the classification result. 

Another topic worthy of discussion is the difference between validation and test performance. In validation data, all three 

classifiers achieve a similar F-1 score, with the HSI classifier having the lowest AUC-ROC. Whereas in the test data, HSI 

classifier achieve both the highest F-1 score and AUC-ROC. A potential explanation for this is because of the variations 

between patients. However, if we look at the patient-by-patient performances in both the test and validation data, we see 

that the HSI classifier performs the best in situations where all three classifiers perform badly. This shows HSI classifier 

performs more consistently than RGB image classifier. We believe that the improvement in consistency comes to the 

unique design of the network, which utilizes an ensemble learning layer to combine outputs from all wavelengths. Further 

work needs to be done in studying and improving the performance of hyperspectral image classifiers.  
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