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ABSTRACT 
 
Ultrasound contrast agents (UCA) are gas encapsulated microspheres that oscillate volumetrically when exposed to an 
ultrasound field producing a backscattered signal which can be used for improved ultrasound imaging and drug delivery. 
UCA’s are being used widely for contrast-enhanced ultrasound imaging, but there is a need for improved UCAs to develop 
faster and more accurate contrast agent detection algorithms. Recently, we introduced a new class of lipid based UCAs 
called Chemically Cross-linked Microbubble Clusters (CCMCs). CCMCs are formed by the physical tethering of 
individual lipid microbubbles into a larger aggregate cluster. The advantages of these novel CCMCs are their ability to 
fuse together when exposed to low intensity pulsed ultrasound (US), potentially generating unique acoustic signatures that 
can enable better contrast agent detection. In this study, our main objective is to demonstrate that the acoustic response of 
CCMCs is unique and distinct when compared to individual UCAs using deep learning algorithms. Acoustic 
characterization of CCMCs and individual bubbles was performed using a broadband hydrophone or a clinical transducer 
attached to a Verasonics Vantage 256. A simple artificial neural network (ANN) was trained and used to classify raw 1D 
RF ultrasound data as either from CCMC or non-tethered individual bubble populations of UCAs. The ANN was able to 
classify CCMCs at an accuracy of 93.8% for data collected from broadband hydrophone and 90% for data collected using 
Verasonics with a clinical transducer. The results obtained suggest the acoustic response of CCMCs is unique and has the 
potential to be used in developing a novel contrast agent detection technique.  
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1. INTRODUCTION  
Ultrasound contrast agents (UCAs), also known as “microbubbles”, are used in contrast-enhanced ultrasound (CEUS) 
imaging due to their unique scattering properties 1. UCAs are vascular contrast agents which enhance the scattered signal 
in the blood in ultrasound images. UCAs are used for cancer diagnosis and other biomedical applications 2-6. However, 
despite recent advances in developing better ultrasound imaging techniques, there is still a need to improve the diagnostic 
accuracy of small and centrally located lesions in prostate cancer 7 and other cancer models. Some of the recent 
developments [7] improved diagnostic accuracies by using the subharmonic responses of UCAs produced by their 
nonlinear acoustic response. However, there are residual background noise that affect the image quality. We need better 
contrast agents that can be localized and detected with high signal to noise ratio.  

Novel contrast agents produce unique acoustics that can be used for CEUS imaging, but the acoustic response might appear 
similar to conventional UCAs with traditional signal processing techniques as the distinction between the CAs may be 
hidden. With deep learning techniques, these hidden distinction and uniqueness of the novel CAs can be detected because 
of their special abilities to correlate and understand the hidden behavior of the acoustic responses. Detecting these novel 
acoustics will help in improving the image quality and resolution of CEUS imaging methods by improving signal to noise 
ratio.  

Recently, our group has developed novel UCAs, called CCMCs 8. Unlike individual UCAs, CCMCs are clusters that have 
a core and surrounding UCAs that are crosslinked to each other with copper-free click chemistry. CCMC's can coalesce 
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when exposed to low intensity pulsed ultrasound (US). We hypothesize that the coalescence of fused microbubbles will 
produce unique US backscatter that can be used for ultrasound imaging. Based on our hypothesis, we predict that the 
acoustic signature of CCMCs can be differentiated from traditional non-crosslinked individual UCAs, potentially leading 
to newer and more effective methods of contrast agent detection. The main purpose of this study is to investigate if the 
acoustic response of CCMCs is unique and can be differentiated from individual UCAs using deep learning. 
 

2. METHODS 
 

2.1 Preparation of CCMCs and Individual UCAs 

Chemically cross-linked microbubble clusters are generated, similar to the method described by Hall et al8, using copper-
free click chemistry9. Briefly, two separate UCA samples with either DSPC-PEG5K-DBCO or DSPC-PEG5K-Azide are 
manufactured (the detailed procedure by Sirsi et al.10). Then these UCAs are mixed in a 1:10 (DBCO: Azide) ratio with 
fixed concentrations and incubated for one hour at 4 degrees Celsius. For the negative control, the DBCO-Azide chemistry 
is blocked using sodium azide, resulting in no cross-linking of bubbles. All the samples are validated using brightfield 
BX50 Upright Microscope (ACH 60X/0.80 ∞/0.17 objective) before moving on to data collection. Clusters are observed 
in CCMCs (Fig.1a) and individual UCAs are observed in the negative control (Fig 1b) under a microscope. 
 

 
Figure 1a: Clusters observed in CCMCs under a microscope. 
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Figure 1b: Individual UCAs observed in negative control under a microscope. 

2.2 Data collection using single element transducer and broadband hydrophone 

Once the samples are validated under a microscope, RF data is captured using a 1.1 MHz focused ultrasound transducer 
(Olympus) to apply ultrasound and a 90º focally co-aligned broadband hydrophone (Sonics Concepts Y-107-MR) to 
receive the scattered signal. Figure 2 shows the acoustic setup used for collecting data. The 1.1 MHz transducer and 
hydrophone are aligned using a custom slide holder to reflect the transmitted signal directly to the broadband transducer. 
After alignment is complete, samples are diluted and dropped inside the acoustic chamber. The acoustic pressure and 
concentration of UCAs for both samples are kept constant. A time-series data is first collected for the negative control and 
followed by the CCMCs subsequently with a total of 7300 frames is captured and saved. Each dataset contains a total of 
100 frames and a total of 73 different datasets were captured and converted to .MAT files for preprocessing.  
 
2.3 Data collection using Verasonics system  

After validating the samples for clusters and individual UCAs, RF data was collected using a GEM5ScD clinical phased 
array transducer and Verasonics Vantage 256 system (Verasonics, Redmond, WA). The samples were diluted with DI 
water. The concentration of UCAs and the acoustical pressure for both samples are kept constant to reduce external 
variations while collecting RF data. Figure 3 shows the flow phantom setup that is used. The phantom has two tunnels that 
run parallel to each other. Both the tunnels carry CCMCs and negative control respectively and they are exposed to 
ultrasound at the same time and the RF data of both the tunnels are captured together in a single frame. The complete 
process of collecting data for CCMCs and negative control is completed simultaneously. This reduces the variability in 
data of CCMCs and negative control that might occur while collecting datasets subsequently. A 20mL syringe is used to 
pump the solution through the phantom and was attached to a syringe pump set at a 1mL/min constant flowrate. 
 
2.4 Data Preprocessing 

The captured RF data went through a series of data preprocessing. For the data collection experiments as described below, 
the steps and conditions for data preprocessing were the same.  
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2.4.1 Data processing for single element transducer and broadband hydrophone datasets 

Initial captured data was converted into MAT files using LabView. The MAT files were then sorted based on the number 
of frames. Each file had RF data of 100 frames and there were 73 files. Each file was created that consisted of 100 frames. 
These files were converted into datasets that had 1 frame in each. In total there were 14,600 samples with 7300 samples of 
CCMCs and negative control respectively. After loading the datasets into python, they were converted into NumPy arrays 
11 and the two samples, CCMCs, and negative control were labeled into different classes. Using the scikit-learn library 12, 
the data was normalized and split into training and validation datasets. 
 
2.4.2 Data processing for Verasonics dataset 

The MAT files had 10,000 frames in one file and there were 105 files in total. A single element that is the central element 
for tunnel carrying CCMCs and the center element for the tunnel carrying negative control was saved into separate files. 
After separation of RF data for the two samples, they were loaded in python and converted into datasets that consisted of 
1 frame. In total there were 1,660,000 samples of CCMCs and negative control respectively. These datasets were separated 
into classes and labeled as Class A and Class B. After normalizing the data using the scikit-learn library, they were split 
into training and validation datasets.  
 
2.5 Deep Learning architecture 

A simple artificial neural network (ANN)13 was used for this classification task. Figure 4 shows a detailed description of 
the network architecture. The task here was to classify CCMCs and negative control with high accuracy. Classifying them 
into separate classes proves that the acoustic response of CCMCs is distinct and different from regular individual UCAs. 
To achieve this result, a simple ANN with 4 hidden layers with 20 units each and a RELU activation function was used 
(Fig 4). The labeled dataset was fed into the algorithm, with each sample point in the frame as an input. The output layer 
had one unit (two classes) with a sigmoid activation function. K-fold cross-validation technique14 was used for avoiding 
overfitting of the data. We implemented the ANN in TensorFlow 15.  
 

 
Figure 2: Acoustic chamber diagram with single element transducer and broadband hydrophone. 
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Figure 3a: Flow phantom setup. 3b: 2D image from the Verasonics system. 3c: Corresponding 1D RF data plot. 

 
 

 

Figure 4: Network architecture with inputs X, 4 hidden layers, and 20 neurons each, and RELU activation function and output Y. 

 
 

3. RESULTS 
 

3.1 Training and validation results for a single element transducer and hydrophone dataset 

We used the repeated k-fold cross-validation technique 14 for this task. We used ten folds and repeated it three times while 
randomizing the datasets for getting valid results without overfitting the model. A binary cross-entropy loss function 16 
was used for calculating loss. The model was trained for a total of 100 epochs. The accuracy and loss can be observed in 
Figures 5a and 5b. The accuracies started at around 70% and reaches above 90% within 10 epochs. The model does not 
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take a lot of time to learn the distinction between the two datasets. The loss is minimized and reaches under 0.1 by the end 
of 50 epochs which shows that the model is optimized to classify the two datasets. We chose the model associated with 
the best training and validation accuracy, which was 98.6% and 95.2%, respectively. These results show that the RF data 
from the CCMCs and individual bubbles can be differentiated well with the help of a simple neural network model. The 
sudden variations in the validation accuracies and losses values are observed which might be due to changes in the weights 
for a certain model but it is improved immediately by optimizing the loss function. 
 

 
Figure 5a: Training and validation accuracies of broadband hydrophone data.  

 
Figure 5b: Training and validation losses of broadband hydrophone data.  
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3.2 Training and validation results for Verasonics Datasets 

We used a technique similar to what was used for the hydrophone data. The k-fold cross-validation technique utilizing 10 
folds was used and repeated three times with randomization to avoid overfitting. A 100% training and validation accuracy 
was obtained with a simple four hidden layered ANN model. The results suggest the RF data of CCMCs, and negative 
control can be classified and distinguished between each other, showing that physically tethering bubbles together produces 
unique acoustic signatures detectable by a clinical transducer. The training and validation datasets were collected on 
different days using independently generated samples. The orientation of the transducer was changed occasionally to 
impart some variations in the dataset. The tunnels carrying UCAs were also swapped for the same reasons. With all these 
variations, the results achieved 100% training and validation accuracies (Figure 6a and 6b). The accuracy reached more 
than 90% at a very fast rate. The learning rate of the optimizer was reduced to stabilize the training process. The accuracy 
and loss curves are smooth as the training process is optimized. This suggests that the model is well trained to find the 
distinction between the two datasets even with the clinical transducer. To test the performance of the model, a new batch 
of the testing dataset was collected later by varying the orientation of the transducer and the tunnel carrying UCAs. This 
dataset was collected to show that the model was generalizable. The results for the testing dataset show us the performance 
of the model. An accuracy of 90.2% was achieved with high sensitivity and specificity of 90% and 84%, respectively, 
proving that there is a clear distinction between most of the datasets.  
 

 
Figure 6a: Training and validation accuracies of clinical transducer RF data.  

 
Figure 6b: Training and validation losses of clinical transducer RF data. 
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4. DISCUSSION AND CONCLUSION 

The proposed method suggests the physical tethering of the lipid microbubbles, in the form of CCMCs, produces unique 
acoustic signatures compared to traditional UCAs.  We anticipate that this unique acoustic response can be used to better 
distinguish CCMCs from background tissue and improve the sensitivity and accuracy of contrast agent detection in vivo. 
One area of future applications we are pursuing is to improve the diagnosis accuracy of small and centrally located lesions 
in prostate cancer using contrast-enhanced ultrasound imaging, where background signals can lead to misclassification of 
lesions. According to our hypothesis, during a coalescence event, the acoustic response of two microbubbles coalescing 
will be different from an individual microbubble oscillating volumetrically 17. Based on this hypothesis, the coalescence 
event of CCMCs when exposed to low-intensity ultrasound can be one among many reasons for this distinction, although 
may not be the only factor that alters the acoustic response. One of the major tasks in our future work is to demonstrate 
conclusively that coalescence is responsible for the unique acoustic signatures and identify the part of the dataset that 
results in this classification between CCMCs and lipid UCAs.  By understanding the precise acoustic differences between 
CCMCs and individual UCAs, we believe that the acoustics from individual CCMCs can then be identified, enabling more 
accurate spatial localization and 2D mapping on an ultrasound image. This has the potential to improve the signal-to-noise 
ratio (SNR) by suppressing the background noise. With better SNR, small lesions and centrally located lesions can be 
better localized and detected by imaging the micro-vascularity, with more precision and accuracy. This also has the 
potential to improve ultrasound super-resolution imaging with better detection and localization of novel contrast agents.  

The results obtained for a single element transducer and broadband hydrophone are convincing, however, better accuracy 
can be obtained by using sophisticated deep learning algorithms that can perform better. We will collect more datasets and 
design a better ANN network architecture with more hidden layers. We did not use dropout layers for training our algorithm 
which can be used to improve the accuracy and used to optimize the results. Despite this, the results support the hypothesis 
that the acoustic response of CCMCs is sufficient to move forward with developing novel contrast agent detection 
techniques based on their unique response.  
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