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ABSTRACT   

The study is to incorporate polarized hyperspectral imaging (PHSI) with deep learning for automatic detection of head and 

neck squamous cell carcinoma (SCC) on hematoxylin and eosin (H&E) stained tissue slides. A polarized hyperspectral 

imaging microscope had been developed in our group. In this paper, we firstly collected the Stokes vector data cubes (S0, 

S1, S2, and S3) of histologic slides from 17 patients with SCC by the PHSI microscope, under the wavelength range from 

467 nm to 750 nm. Secondly, we generated the synthetic RGB images from the original Stokes vector data cubes. Thirdly, 

we cropped the synthetic RGB images into image patches at the image size of 96x96 pixels, and then set up a ResNet50-

based convolutional neural network (CNN) to classify the image patches of the four Stokes vector parameters (S0, S1, S2, 

and S3) by application of transfer learning. To test the performances of the model, each time we trained the model based 

on the image patches (S0, S1, S2, and S3) of 16 patients out of 17 patients, and used the trained model to calculate the 

testing accuracy based on the image patches of the rest 1 patient (S0, S1, S2, and S3). We repeated the process for 6 times 

and obtained 24 testing accuracies (S0, S1, S2, and S3) from 6 different patients out of the 17 patients. The preliminary 

results showed that the average testing accuracy (84.2%) on S3 outperformed the average testing accuracy (83.5%) on S0. 

Furthermore, 4 of 6 testing accuracies of S3 (96.0%, 87.3%, 82.8%, and 86.7%) outperformed the testing accuracies of S0 

(93.3%,  85.2%, 80.2%, and 79.0%). The study demonstrated the potential of using polarized hyperspectral imaging and 

deep learning for automatic detection of head and neck SCC on pathologic slides.  

 

Keywords: Polarized hyperspectral imaging, Stokes vector, head and neck cancer, deep learning, histologic slides, 

digital pathology. 

1. INTRODUCTION 

Head and neck squamous cell carcinoma (SCC) is originated from the mucosal epithelium in the oral cavity, pharynx and 

larynx and is a major head and neck malignancy [1]. Computational pathology, also known as digital pathology, is an 

emerging technology that promises quantitative diagnosis of pathological samples, and traditional computational 

pathology relies on RGB digitized histology images [2]. Multidimensional optical imaging has grown rapidly in the recent 

years. Rather than measuring only the two-dimensional spatial distribution of light as in the conventional photography, 

multidimensional optical imaging captures unprecedented information about photons’ spatial coordinates, emittance 

angles, wavelength, time, and polarization [3].  

Hyperspectral imaging (HSI) is an optical imaging method that was originally used in remote sensing, and it has been 

extended to the applications in several other promising fields including biomedical applications [4]. Hyperspectral imaging 

acquires the spectra at every pixel in a two-dimensional (2D) image and constructs a three-dimensional (3D) data cube, 

where rich spatial and spectral information can be obtained simultaneously. Hyperspectral imaging has been implemented 

Medical Imaging 2022: Digital and Computational Pathology, edited by John E. Tomaszewski,
Aaron D. Ward, Proc. of SPIE Vol. 12039, 120390G · © 2022 SPIE

1605-7422 · doi: 10.1117/12.2614624

Proc. of SPIE Vol. 12039  120390G-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 29 Apr 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 
 

 

 

on the detection of head and neck cancer [5-17].  Yushkov et al [5] developed an acoustic-optic hyperspectral imaging 

system with an amplitude mask, which improved the contrast for phase visualization in the stained and unstained 

histological sections of human thyroid cancer. A pilot study was implemented to test the feasibility of a hyperspectral 

imaging system for in vivo delineating the preoperatively lateral margins of ill-defined BCCs on the head and neck region 

[6]. Our group has investigated several machine learning and deep learning algorithms for head and neck cancer detection 

based on hyperspectral imaging, including principal component analysis (PCA) [7], tensor-based computation and 

modeling [8], the incorporation of support vector machine (SVM) into a minimum spanning forest [9, 10], non-negative 

matrix factorization (NMF) [11], the combination of super pixels, PCA, and SVM [12], as well as convolutional neural 

networks (CNN) [13, 14, 15, 16, 17].  

Polarized light imaging is an effective optical imaging technique to explore the structure and morphology of biological 

tissues through obtaining their polarization characteristics. It can acquire the 2D spatial polarization information of the 

tissue, which reflects various physical properties of the tissue, including surface texture, surface roughness, and surface 

morphology information [18, 19, 20, 21, 22]. The categories of polarized light imaging techniques, namely linear 

polarization imaging [23, 24, 25]. Muller matrix imaging [26, 27], and Stokes vector imaging [28], have been applied on 

head and neck cancer detection. Orthogonal polarization spectral (OPS) imaging method, which is a type of linear 

polarization imaging method, was implemented for evaluation of anti-vascular tumor treatment and oral squamous cell 

carcinoma on tissue [23, 24]. A multispectral digital microscope (MDM) with an orthogonal polarized reflectance (OPR) 

imaging mode was developed for in vivo detection of oral neoplasia [25]. A 4×4 Muller matrix imaging and polar 

decomposition method were applied for diagnosis of oral precancer [27], and the researchers adopted a 3×3 Muller Matrix 

imaging method for oral cancer detection [26]. In our previous study, we developed a novel polarized hyperspectral 

imaging microscope, which is able to distinguish squamous cell carcinoma from normal tissue on hematoxylin and eosin 

(H&E) stained slides from larynx based on the spectra of Stokes vector [28].   

Polarized hyperspectral imaging (PHSI) is a combination of polarization measurement, hyperspectral analysis, and space 

imaging technology. It can obtain the polarization, spectral and morphological information of the object simultaneously 

[29, 30, 31]. In this paper, we are developing a novel dual-modality optical imaging microscope by combining 

hyperspectral imaging and polarized light imaging. The microscope is capable of acquiring polarization, spectral and 

spatial information of an object simultaneously, and provides more image information for digital pathology compared to 

RGB digitized histology images. We incorporated the polarized hyperspectral imaging microscope with machine 

learning algorithms for automatic detection of SCC on H&E-stained tissue slides. We also investigated the ability of 

using deep learning algorithms to classify the data collected with the polarized hyperspectral imaging microscope. To the 

best of our knowledge, this is the first study to use polarized hyperspectral imaging for the detection of head and neck 

cancer based on full Stokes polarized hyperspectral imaging datasets, with the assistance of deep learning methods. Our 

home-made polarized hyperspectral microscope has the potential to automatic identify if a H&E stained tissue slide has 

tumor or not, and outline the tumor boundary on the slide, thus provides an innovative solution for automatic 

histopathology analysis. 

 

2. METHODS 

2.1 Polarized hyperspectral imaging 

The setup of our home-made polarized hyperspectral microscope has been described in [28]. The system is capable of full 

Stokes polarized light hyperspectral imaging, which acquires the images of four Stokes vector parameters (S0, S1, S2, and 

S3) in the wavelength range from 467 nm to 750 nm. The images were collected under 10× magnification with an image 

size of 1200 × 1200 pixels, and the field of view of the imaging system was 656 um × 656 um. The core components of 

the imaging system include an optical microscope, two polarizers, two liquid crystal variable retarders (LCVR), and a 

novel SnapScan hyperspectral camera. The LCVRs and polarizers in the system are for polarized light imaging. The 

SnapScan hyperspectral camera is able to acquire data through the translation of the imaging sensor inside of the camera. 

The polarized light imaging components and hyperspectral imaging components work together in the image acquisition 

progress to obtain the Stokes vector parameters in the visible wavelength range. In the polarized hyperspectral imaging 

dataset obtained by the system, each Stokes vector parameter corresponds to a 3D data cube with two spatial dimensions 

and one spectral dimension, as shown in Figure 1. 
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Figure 1. Diagram of full-polarization hyperspectral imaging data cubes. The data cube of each Stokes parameter (S0, S1, S2, and S3) 

has three dimensions including two spatial dimensions (x, y) and one spectral dimension (λ). 

 

Polarized light imaging is realized by the two polarizers and two LCVRs. Figure 2 demonstrates the schematic of the 

imaging system with fast axis orientations of polarizers and LCVRs. Polarizer 1 was set at 45 degrees, and polarizer 2 was 

set at 0 degrees. LCVR 1 was set at 0 degrees, and LCVR 2 was set at 45 degrees. The system is capable of full Stokes 

polarimetric imaging, which produces all four components of the Stokes vector. Thus, the system can completely define 

the polarization properties of transmitted light. The way to calculate the four elements of Stokes vector (S0, S1, S2, and 

S3) is expressed in the following equation (1): 

 

                    𝑆0 = 𝐼ℎ + 𝐼𝑣  

                 𝑆1 = 𝐼ℎ − 𝐼𝑣  

                    𝑆2 = 2 ∗ 𝐼45 − (𝐼ℎ + 𝐼𝑣)                                                              (1) 

                         𝑆3 = 2 ∗ 𝐼𝑟𝑐 − (𝐼ℎ + 𝐼𝑣)  
 

where 𝐼ℎ represent the light intensity measured with a horizontal linear analyzer, in which the retardations of LCVR 1 and 

LCVR 2 are both set at 0 rad; 𝐼𝑣  represents the light intensity measured with a vertical linear analyzer, in which LCVR 1 

is set at 0 rad retardation and LCVR 2 is set at π rad retardation;  𝐼45 represents the light intensity measured with a 45 

degrees oriented linear analyzer, in which LCVR 1 and LCVR 2 are both set at π/2 rad retardation; 𝐼𝑟𝑐 represents the light 

intensity measured with a right circular analyzer, in which LCVR 1 is set at 0 rad retardation and LCVR 2 is set at π/2 rad 

retardation. The phase retardation of LCVR is determined by different values of voltage applied on it. In addition, the 

value of S0 is equal to the value of light intensity.  

 

Figure 2. Schematic of the polarized light imaging system. The fast axis orientation of polarizer 1 was set at 45 degrees, and polarizer 2 

was set at 0 degrees. The fast axis orientation LCVR 1 was set at 0 degrees, and LCVR 2 was set at 45 degrees. 

 

2.2 Sample preparation and data acquisition 

Fresh surgical tissue samples were obtained from patients who underwent surgical resection of head and neck cancer, as 

we described earlier [32]. Of each patient, a sample of the primary tumor, a normal tissue sample, and a sample at the 

tumor-normal margin were collected. Fresh ex-vivo tissues were formalin fixed, paraffin embedded, sectioned, stained 

with hematoxylin and eosin, and digitized using whole-slide scanning. Then, a board-certified pathologist with expertise 
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in head and neck pathology outlined the cancer margin on the digital slides using Aperio ImageScope (Leica Biosystems 

Inc, Buffalo Grove, IL, USA). The annotations were used as histology ground truth in this study. 

In the image acquisition progress, we acquired images of 𝐼ℎ, 𝐼𝑣 , 𝐼−45,  𝐼𝑙𝑐  , and then calculated the Stokes vector parameters 

(S0, S1, S2, S3). We collected the image data from H&E-stained tissue slides of 17 patients with squamous cell carcinoma. 

The selected areas to be imaged on normal tissue slides were from healthy stratified squamous epithelium, and the selected 

areas to be imaged on cancerous tissue slides were at or close to cancer nests. We cropped the original images with the 

image size of 1200 × 1200 pixels into image patches with a patch size of 96 × 96 pixels.  

2.3 Synthetic RGB images 

To generate synthetic RGB images, we adopted a HSI-to-RGB transformation function similar to the spectral response of 

human eye and modified it for our data to generate the synthetic RGB images [33]. The transformation function is shown 

in Figure 3. We applied this HSI-to-RGB transformation function to all the four Stokes vector parameters (S0, S1, S2, and 

S3) to generate four sets of PHSI-synthesized RGB images. 

 

 

Figure 3. Transformation function to synthesize pseudo-RGB images from the polarized hyperspectral data cubes.   

2.4 Convolutional neural network classification 

In this study, we trained our convolutional neural network (CNN) based on ResNet50 using transfer learning strategy. A 

residual neural network (ResNet) is a type of deep convolutional neural networks using skip connections to jump over 

some layers, which is proved to work efficiently on solving the problem of vanish gradients and degradation [34]. 

ResNet50 is a variant of ResNet model which has 48 Convolution layers along with 1 MaxPool and 1 Average Pool layer. 

Transfer learning is a strategy in machine learning that focused on storing knowledge gained while solving one problem 

and applying it to a different but related problem [35]. Deep Learning requires significant training data and training time 

compared to machine Learning like for computer vision or sequential text processing or audio processing. We can save 

the weights of our trained models and share for others to use. We also have pre-trained models today that are extensively 

used for Transfer Learning referred to as Deep Transfer Learning. 

Firstly, we loaded the weights of the ResNet50 model trained based on ImageNet. Secondly, we replaced the last predicting 

layer of the pre-trained ResNet50 model a set of our own predicting layers, including a flatten layer, a dense layer, a batch 

normalization layer, an activation layer, a dropout layer, and another dense layer. Thirdly, we froze the weights of pre-

trained ResNet50 model. The frozen pre-trained ResNet50 model were used as feature extractor, and not updated during 
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the training. Finally, we started the train our models, and only updated the weights of our own predicting layers. Model 

training was implemented using Keras with Tensorflow backend on a GeForce RTX 2080 GPU. The optimizer used in the 

model training was Adam, the loss function was binary cross-entropy, and the activation function of the output layer was 

sigmoid. Table 1 demonstrates our CNN architecture and the total number of parameters at each layer of it. 

Image patches (96 × 96 pixels) generated from the synthetic RGB images of S0, S1, S2, and S3 were used for training the 

CNN. We took accuracy as the evaluation metric, which is defined as the ratio of the number of correctly classified image 

patches to the total number of image patches in the ground truth, as is expressed in equation (2): 

                                                                   Accuracy=TP+TN/(TP+TN+FP+FN)                                                              (2)                                                                                                           

where true positive (TP) refers to the number of correctly classified cancerous image patches, true negative (TN) refers to 

the number of correctly classified normal image patches, false positive (FP) refers to the number of normal image patches 

classified into cancerous image patches, and false negative (FN) refers to the number of cancerous image patches classified 

into normal image patches.  

 

Table 1. CNN architecture. 

Layer Parameter # 

ResNet50 (Model) 23587712 

Flatten 0 

Dense 524288 

BatchNormalization 1024 

Activation (Relu) 0 

Dropout (0.5) 0 

Dense 257 

 

3. RESULTS 

3.1 Comparison of Stokes vector parameters 

In Figure 4, we demonstrate the PHSI-synthesized RGB images of Stokes vector parameters (S0, S1, S2, and S3) from a 

normal image of the normal slide and a cancerous image of the tumor slide from the same patient. The value of S0 is equal 

to light intensity, so the PHSI-synthesized image of S0 looks very similar to the appearance of images acquired by RGB 

cameras of H&E stained tissue slides. In the H&E staining process, The hematoxylin stains cell nuclei a purplish blue, and 

eosin stains the extracellular matrix and cytoplasm pink, with other structures taking on different shades, hues, and 

combinations of these colors [36]. The overall image intensity of the PHSI-synthesized RGB images of S1, S2, and S3 are 

all relatively lower compared to S0, as they demonstrate the differences (not sum) between polarized light components. 

The PHSI-synthesized RGB images of S1, S2, and S3 to some extent lose the color information of purplish blue and pink, 

compared to the PHSI-synthetic RGB images of S0. However, the PHSI-synthetic RGB images of S1, S2, and S3 keep the 

clear structural information and image contrasts among cell nuclei, extracellular matrix, and cytoplasm.  

Figure 5 demonstrates the cropped PHSI-synthesized RGB image patches (96x96 pixels) of S0, S1, S2, and S3 from a 

normal image of a patient. We are able to see more detailed image features from the PHSI-synthesized RGB image patches. 

The 4 columns of images shown in figure 5 belong to 4 different regions of the slide. From each column of images, we 

can observe that different Stokes vector parameter keeps different types of structural information on the tissue slide, like 

the orientations of extracellular matrix (ECM), and the contours of cells. 

Figure 6 demonstrates the spectra for the Stokes vector parameters (S0, S1, S2, and S3) from the acquired normal image 

and the tumor image of one patient by the PHSI microscope. The spectra for (S0, S1, S2, and S3) are plotted with the 

average and standard deviation of an area of 200x200 pixels in the image. We can observe the differences of the spectra 

in S0, S1, S2, and S3. 
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Figure 4. The PHSI-synthesized RGB images of S0, S1, S2, and S3 (left to right) from a normal area (top) and a cancerous area 

(bottom) of the same patient.   

                         

                                                     

                                  

                              

                              

Figure 5. Four columns of cropped PHSI-synthesized RGB image patches (96x96 pixels) (S0, S1, S2, and S3) showing four different 

regions on one normal tissue slide. 
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Figure 6. The spectra for the Stokes vector parameters (S0, S1, S2, and S3) from the acquired normal image and the 

tumor image of one patient 

 

3.2 Performances of the convolutional neural network 

Leave-patient-out cross validation was conducted on image patches from 17 patients based on the CNN architecture we 

described above. The patient numbers are as follows: 62, 68, 74, 103, 110, 120, 127, 133, 134, 137, 146, 149, 154, 161, 

166, 184, 187. We used the PHSI-synthesized RGB image patches of S0, S1, S2, and S3 belonging to patient 74, patient 

103, patient 127, patient 134, patient 161 and patient 166 to calculate the testing accuracies. Each time we used the image 

patches of a single parameter (S0, S1, S3 or S3) from one patient as the testing data, and used the image patches of the 

same parameter (S0, S1, S2, or S3) from the rest 16 patients as the training data. In the training progress, we implemented 

8 fold cross validation. In each fold, we randomly chose 2 patients for validation to avoid bias. The results of testing 

accuracies are listed in Table 2. 

The result shows that the average testing accuracy (84.2%) on S3 outperformed the average testing accuracy (83.5%) on 

S0. This suggested the potential of using polarized hyperspectral imaging and deep learning to increase the accuracy of 

automatic detection of head and neck SCC on pathologic slides. Furthermore, the testing accuracies of S3 (96.0%, 87.3%, 
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82.8%, and 86.7%) outperformed the testing accuracies of S0 (93.3%, 85.2, 80.2%, and 79.0%) from 4 of 6 patients in the 

testing data. Furthermore, the average testing accuracies of S1 (54.8%) and S2 (59.3%) are both lower than S0 (83.5%). 

 

Table 2. Result of the testing accuracies for S0 and S1 of patient 127, patient 134, and patient 137. 

Patient # S0 S1 S2 S3 

74 93.3% 71.1% 40.9% 96.0% 

              127 85.2% 55.6% 64.8% 87.3% 

              134 80.2% 51.6% 66.7% 82.8% 

              166 79.0% 16.3% 69.2% 86.7% 

              161      80.5%      61.4%      52.8% 74.8% 

              103      82.9%      73.0%      61.3%      77.5% 

Average 83.5% 54.8% 59.3% 84.2% 

 

4. DISCUSSION AND CONCLUSION 

This is the first work to use Stokes vector based polarized hyperspectral imaging and deep learning in cancer 

histopathology. The major innovative aspect of this work is the automatic detection of head and neck cancer based on 

pathologic slides using deep learning and different Stokes vector parameters. In this study, our experiment demonstrates 

the ability of using polarized hyperspectral imaging and deep learning for automatic detection of head and neck SCC on 

pathologic slides.  

The current deep learning classifiers were set up only based on the PHSI-synthesized RGB images of Stokes vector 

parameters, which did not apply all the wavelength information contained in the data cubes of Stokes vector. In the future 

study, we will build up deep learning classifiers based on the complete PHSI data cubes of the four Stokes vector 

parameters (S0, S1, S2, and S3) from more patients and cancer types, and make the quantitative comparison among the 

performances of different classifiers.  

The current classifiers were only trained based on the separated Stokes vector parameters. From the preliminary results 

shown in this paper, we could see that each Stokes vector contains its own unique structural and wavelength information 

in the PHSI data cubes. Therefore, it is worth to set up the deep learning classifier which is capable of utilizing all the 

information from those four Stokes vector parameters (S0, S1, S2, and S3) to finish the classification task. One feasible 

solution for this might be the ensemble learning strategy. In addition, the current images we collected from each tissue 

slide did not cover all the regions on the slide, and we will acquired more images from all the regions on the tissue slides, 

to generate whole slide images. We will prove that our home-made polarized hyperspectral microscope does not only have 

the potential to automatic identify if a H&E stained tissue slide has tumor or not, but also has the potential to outline the 

tumor boundary on the H&E stained tissue slide by using whole slide images. 
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