High-field Magnetic Resonance Imaging (microMRI)

The multipurpose research system is a high-resolution magnetic resonance spectroscopy and imaging scanner for 2- or 3-dimensional image reconstruction based on the principles of nuclear magnetic resonance. The high-field system is equipped with multiple gradient sets specifically for high-resolution in-vivo imaging applications (< 100um). The Biospec® system is also equipped with broadband capabilities for multinuclear imaging and spectroscopy applications (ex. 1H, 31P, 15N, 13C, 19F). The system is also capable of cardiac / respiratory gating / monitoring to limit the negative effects of motion on image quality. This feature is critical for imaging animals with high respiration / heart rates. This system is located at the Division of Animal Division (DAR) in the Whitehead Building at Emory University.

T2-weighted MR images of a tumor-bearing mouse before photodynamic therapy (PDT) and 24-hr after PDT (right). The signal intensity values changed 24-hr after the treatment. Compared to the T2 map pre-PDT (bottom), the T2 values increased 24-hr after the treatment, especially within the treated tumor (arrow). B Fei, H Wang, JD Meyers, D Feyes, NL Oleinick, JL Duerk, “High-Field Magnetic Resonance Imaging of the Response of Human Prostate Cancer to Pc 4-based Photodynamic Therapy in an Animal Model”, Lasers in Surgery and Medicine, 39(9):723-30, 2007 Abstract|Full Text


High-resolution MR imaging for mouse kidneys